IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16343-d996018.html
   My bibliography  Save this article

Municipal Solid Waste as a Substitute for Virgin Materials in the Construction Industry: A Review

Author

Listed:
  • Liliana Lizárraga-Mendiola

    (Academic Area of Engineering and Architecture, Autonomous University of the State of Hidalgo, km 4.5 Pachuca-Tulancingo Highway, Pachuca 42184, Mexico)

  • Luis D. López-León

    (Academic Area of Engineering and Architecture, Autonomous University of the State of Hidalgo, km 4.5 Pachuca-Tulancingo Highway, Pachuca 42184, Mexico)

  • Gabriela A. Vázquez-Rodríguez

    (Academic Area of Chemistry, Autonomous University of the State of Hidalgo, km 4.5 Pachuca-Tulancingo Highway, Pachuca 42184, Mexico)

Abstract

Municipal solid waste (MSW) requires adequate management to mitigate the negative impacts caused by its poor disposal in the environment. It is composed of several fractions, such as organic waste, paper, cardboard, metals, plastic, and glass, among other valuable materials. An area of opportunity for its recovery is the construction industry, which currently consumes around 3000 million tons of natural resources annually and is responsible for 34% of greenhouse gas emissions into the atmosphere. There are examples of the worldwide reuse of MSW in construction materials: plastics have been incorporated as substitutes for sand in the production of concrete and pavements; paper as a hygrothermal and lighting regulator in buildings; and glass has been reused as fine aggregate in concrete mixtures, among others. In this paper, we revised how these MSW fractions have been used for designing and producing sustainable construction materials, thereby favoring a circular economy approach and reducing their landfilling. Opportunity areas for these materials to be developed and applied were also identified focusing on Latin America and the Caribbean.

Suggested Citation

  • Liliana Lizárraga-Mendiola & Luis D. López-León & Gabriela A. Vázquez-Rodríguez, 2022. "Municipal Solid Waste as a Substitute for Virgin Materials in the Construction Industry: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16343-:d:996018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emily Elhacham & Liad Ben-Uri & Jonathan Grozovski & Yinon M. Bar-On & Ron Milo, 2020. "Global human-made mass exceeds all living biomass," Nature, Nature, vol. 588(7838), pages 442-444, December.
    2. Adewumi John Babafemi & Branko Šavija & Suvash Chandra Paul & Vivi Anggraini, 2018. "Engineering Properties of Concrete with Waste Recycled Plastic: A Review," Sustainability, MDPI, vol. 10(11), pages 1-26, October.
    3. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    4. West, James & Schandl, Heinz, 2013. "Material use and material efficiency in Latin America and the Caribbean," Ecological Economics, Elsevier, vol. 94(C), pages 19-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riya Sawarkar & Adnan Shakeel & Piyush A. Kokate & Lal Singh, 2022. "Organic Wastes Augment the Eco-Restoration Potential of Bamboo Species on Fly Ash-Degraded Land: A Field Study," Sustainability, MDPI, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    2. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    3. Seeram Ramakrishna & Wayne Hu & Rajan Jose, 2023. "Sustainability in Numbers by Data Analytics," Circular Economy and Sustainability, Springer, vol. 3(2), pages 643-655, June.
    4. Khozema Ahmed Ali & Mardiana Idayu Ahmad & Yusri Yusup, 2020. "Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    5. Huston, Simon, 2020. "Academic letter on French Indochina War: metaphors for strategic insight," OSF Preprints 2p9by, Center for Open Science.
    6. Yoshida, Keisuke & Fishman, Tomer & Okuoka, Keijiro & Tanikawa, Hiroki, 2017. "Material stock's overburden: Automatic spatial detection and estimation of domestic extraction and hidden material flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 165-175.
    7. Xiao, Yihao & Xue, Yahui, 2024. "A review on application of microwave in cement life cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Wang, Zhiping & Feng, Chao & Chen, Jinyu & Huang, Jianbai, 2017. "The driving forces of material use in China: An index decomposition analysis," Resources Policy, Elsevier, vol. 52(C), pages 336-348.
    9. Cecília Szigeti & Zoltán Major & Dániel Róbert Szabó & Áron Szennay, 2023. "The Ecological Footprint of Construction Materials—A Standardized Approach from Hungary," Resources, MDPI, vol. 12(1), pages 1-15, January.
    10. Juan Pablo Ríos Ocampo & Yris Olaya Morales, 2017. "Sustainability of the domestic consumption of construction materials in Colombia, 1990-2013," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 127-151, Enero - J.
    11. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    12. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    13. Marin Pellan & Denise Almeida & Mathilde Louërat & Guillaume Habert, 2024. "Integrating Consumption-Based Metrics into Sectoral Carbon Budgets to Enhance Sustainability Monitoring of Building Activities," Sustainability, MDPI, vol. 16(16), pages 1-25, August.
    14. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Mingyue Yang & Ningyin Liu & Xinjing Wang & Yan Zhang, 2023. "Chinese cities exhibit diverse allometric growth patterns in material metabolism," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1626-1638, December.
    16. Jose-Luis Palacios & Guiomar Calvo & Alicia Valero & Antonio Valero, 2018. "Exergoecology Assessment of Mineral Exports from Latin America: Beyond a Tonnage Perspective," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    17. Adewumi John Babafemi & Nina Sirba & Suvash Chandra Paul & Md Jihad Miah, 2022. "Mechanical and Durability Assessment of Recycled Waste Plastic (Resin8 & PET) Eco-Aggregate Concrete," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    18. Farid Shahnavaz & Reza Akhavian, 2022. "Automated Estimation of Construction Equipment Emission Using Inertial Sensors and Machine Learning Models," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    19. Wenchao Li & Jian Xu & Zhengming Wang & Jialiang Yang, 2020. "The impact of LCTI on China's low-carbon transformation from the spatial spillover perspective," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-11, November.
    20. Fishman, Tomer & Schandl, Heinz & Tanikawa, Hiroki, 2015. "The socio-economic drivers of material stock accumulation in Japan's prefectures," Ecological Economics, Elsevier, vol. 113(C), pages 76-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16343-:d:996018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.