IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v8y2019i3p133-d252354.html
   My bibliography  Save this article

Effect of Recycled Plastic Granules as a Partial Substitute for Natural Resource Sand on the Durability of SCC

Author

Listed:
  • Bala Rama Krishna Chunchu

    (Research scholar, Department of Structural and Geo-technical engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore-632014, India)

  • Jagadeesh Putta

    (Professor, School of Civil Engineering, Vellore Institute of Technology, Vellore-632014, India)

Abstract

This investigation is focused on durability studies of binary blended self-compacting concrete (SCC) with the replacement effect of electronic plastic waste, namely high-impact polystyrene (HIPS) granules as partial sand. In the current investigation, for all the SCC mixes, cement is replaced with pozzolanic material fly ash in the binder content of 497 kg/m 3 and an adopted water-to-binder ratio of 0.36. Durability properties such as porosity, water absorption, and sorptivity are assessed for the curing periods of 28 and 90 days on SCC specimens produced with HIPS (0%–40% replacement by volume of sand). Both surface and internal water absorption rates were found to be minimal for SCC with HIPS. Replacement of HIPS up to 30% in SCC exhibited improved trends for all tests results. Reported durability parameter values were within permissible limits and revealed the excellent performance of HIPS in SCC. The optimum durability values can be attributed to the dense microstructure of SCC obtained with the combined effect of HIPS and fly ash. The continuous gradation of aggregates in the matrix reduced porosity due to the spherical shape of HIPS; additionally, the hydrophobicity of HIPS inhibits moisture migration in SCC. The additional benefits of fly ash, such as pozzolanic action and the filler effect at the interfacial transition zone (ITZ) are also major contributions to the long-term performance of durability. Electronic plastic waste replacement for fine aggregates in concrete compensates for the disposal problem and conserves natural sand.

Suggested Citation

  • Bala Rama Krishna Chunchu & Jagadeesh Putta, 2019. "Effect of Recycled Plastic Granules as a Partial Substitute for Natural Resource Sand on the Durability of SCC," Resources, MDPI, vol. 8(3), pages 1-14, July.
  • Handle: RePEc:gam:jresou:v:8:y:2019:i:3:p:133-:d:252354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/8/3/133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/8/3/133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adewumi John Babafemi & Branko Šavija & Suvash Chandra Paul & Vivi Anggraini, 2018. "Engineering Properties of Concrete with Waste Recycled Plastic: A Review," Sustainability, MDPI, vol. 10(11), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adewumi John Babafemi & Nina Sirba & Suvash Chandra Paul & Md Jihad Miah, 2022. "Mechanical and Durability Assessment of Recycled Waste Plastic (Resin8 & PET) Eco-Aggregate Concrete," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    2. Sean Jamieson & Greg White & Luke Verstraten, 2024. "Principles for Incorporating Recycled Materials into Airport Pavement Construction for More Sustainable Airport Pavements," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    3. Ichiro Tsuchimoto & Yuya Kajikawa, 2022. "Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-39, December.
    4. Khawar Ali & Panumas Saingam & Muhammad Irshad Qureshi & Shahzad Saleem & Adnan Nawaz & Tahir Mehmood & Ahsen Maqsoom & Muhammad Waqas Malik & Suniti Suparp, 2023. "Influence of Recycled Plastic Incorporation as Coarse Aggregates on Concrete Properties," Sustainability, MDPI, vol. 15(7), pages 1-25, March.
    5. Malgorzata Ulewicz & Jakub Jura & Adam Gnatowski, 2024. "Cement Mortars Based on Polyamide Waste Modified with Fly Ash from Biomass Combustion—A New Material for Sustainable Construction," Sustainability, MDPI, vol. 16(7), pages 1-15, April.
    6. Liliana Lizárraga-Mendiola & Luis D. López-León & Gabriela A. Vázquez-Rodríguez, 2022. "Municipal Solid Waste as a Substitute for Virgin Materials in the Construction Industry: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    7. Simona Marinelli & Samuele Marinello & Francesco Lolli & Rita Gamberini & Antonio Maria Coruzzolo, 2023. "Waste Plastic and Rubber in Concrete and Cement Mortar: A Tertiary Literature Review," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    8. Wenqiang Xing & Zhihe Cheng & Xianzhang Ling & Liang Tang & Shengyi Cong & Shaowei Wei & Lin Geng, 2022. "Bearing Properties and Stability Analysis of the Slope Protection Framework Using Recycled Railway Sleepers," Sustainability, MDPI, vol. 14(8), pages 1-11, April.
    9. Mohamed Meftah Ben Zair & Fauzan Mohd Jakarni & Ratnasamy Muniandy & Salihudin Hassim, 2021. "A Brief Review: Application of Recycled Polyethylene Terephthalate in Asphalt Pavement Reinforcement," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    10. Fahad K. Alqahtani & Ibrahim S. Abotaleb & Sara Harb, 2021. "LEED Study of Green Lightweight Aggregates in Construction," Sustainability, MDPI, vol. 13(3), pages 1-18, January.
    11. Syed Nasir Abbas & Muhammad Irshad Qureshi & Malik Muneeb Abid & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng, 2022. "An Investigation of Mechanical Properties of Concrete by Applying Sand Coating on Recycled High-Density Polyethylene (HDPE) and Electronic-Wastes (E-Wastes) Used as a Partial Replacement of Natural Co," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    12. Alessandra Bonoli & Sara Zanni & Francisco Serrano-Bernardo, 2021. "Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    13. Saimin Huang & Hongchang Wang & Waqas Ahmad & Ayaz Ahmad & Nikolai Ivanovich Vatin & Abdeliazim Mustafa Mohamed & Ahmed Farouk Deifalla & Imran Mehmood, 2022. "Plastic Waste Management Strategies and Their Environmental Aspects: A Scientometric Analysis and Comprehensive Review," IJERPH, MDPI, vol. 19(8), pages 1-31, April.
    14. Mazen A. Al-Sinan & Abdulaziz A. Bubshait, 2022. "Using Plastic Sand as a Construction Material toward a Circular Economy: A Review," Sustainability, MDPI, vol. 14(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:8:y:2019:i:3:p:133-:d:252354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.