IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i1p833-d1023269.html
   My bibliography  Save this article

Application of Entropy-Based Ecologic Indicators for Intrinsic Sustainability Assessment of EU27 Member States Waste Management Systems at Technosphere Level

Author

Listed:
  • Francesco Di Maria

    (LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

  • Amani Maalouf

    (Oxford Sustainable Finance Group, Smith School of Enterprise and the Environment, School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK)

Abstract

Starting from the specific entropy (SE) indicator, which is well exploited by ecologists for investigating the status of health and the development tendency of ecosystems, a specific entropy per amount of exergy gained (SEEG) was proposed in this study for assessing the intrinsic sustainability of systems in the technosphere. According to the SE, the lower the SEEG indicator, the higher the intrinsic sustainability of the investigated system. This indicator was used for assessing the intrinsic sustainability of the main waste management (WM) systems of the different EU27 member states (MS). The main findings demonstrate average values of SEEG of about 0.0026 and 0.009 for composting and recycling, respectively. For incineration and landfilling, SEEG was 1.310 and 1.333, respectively. This indicates that incineration activity has a lower intrinsic sustainability. Concerning WM systems, lower values of SEEG were detected for EU 27 MS with recycling and composting percentages of waste >55%. Therefore, the maximization of percentages of waste recycled and composted, as well as solid recovered fuel production, are preferred over incineration.

Suggested Citation

  • Francesco Di Maria & Amani Maalouf, 2023. "Application of Entropy-Based Ecologic Indicators for Intrinsic Sustainability Assessment of EU27 Member States Waste Management Systems at Technosphere Level," Sustainability, MDPI, vol. 15(1), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:1:p:833-:d:1023269
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blengini, Gian Andrea, 2008. "Using LCA to evaluate impacts and resources conservation potential of composting: A case study of the Asti District in Italy," Resources, Conservation & Recycling, Elsevier, vol. 52(12), pages 1373-1381.
    2. Di Maria, Francesco & Sisani, Federico & Lasagni, Marzio & Borges, Marisa Soares & Gonzales, Thiago H., 2018. "Replacement of energy crops with bio-waste in existing anaerobic digestion plants: An energetic and environmental analysis," Energy, Elsevier, vol. 152(C), pages 202-213.
    3. Özdoĝan, Si̇bel & Arikol, Mahi̇r, 1995. "Energy and exergy analyses of selected Turkish industries," Energy, Elsevier, vol. 20(1), pages 73-80.
    4. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    6. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    7. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    8. Wildavsky, Aaron, 1987. "Choosing Preferences by Constructing Institutions: A Cultural Theory of Preference Formation," American Political Science Review, Cambridge University Press, vol. 81(1), pages 3-21, March.
    9. Ertesvåg, Ivar S & Mielnik, Michal, 2000. "Exergy analysis of the Norwegian society," Energy, Elsevier, vol. 25(10), pages 957-973.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    2. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    3. Zhang, M. & Li, G. & Mu, H.L. & Ning, Y.D., 2011. "Energy and exergy efficiencies in the Chinese transportation sector, 1980–2009," Energy, Elsevier, vol. 36(2), pages 770-776.
    4. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    5. Luciano Rodrigues Viana & Pierre-Luc Dessureault & Charles Marty & Jean-François Boucher & Maxime C. Paré, 2023. "Life Cycle Assessment of Oat Flake Production with Two End-of-Life Options for Agro-Industrial Residue Management," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    6. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    7. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    8. Koroneos, Christopher J. & Nanaki, Evanthia A. & Xydis, George A., 2011. "Exergy analysis of the energy use in Greece," Energy Policy, Elsevier, vol. 39(5), pages 2475-2481, May.
    9. Serrenho, André Cabrera & Sousa, Tânia & Warr, Benjamin & Ayres, Robert U. & Domingos, Tiago, 2014. "Decomposition of useful work intensity: The EU (European Union)-15 countries from 1960 to 2009," Energy, Elsevier, vol. 76(C), pages 704-715.
    10. Byers, Edward A. & Gasparatos, Alexandros & Serrenho, André C., 2015. "A framework for the exergy analysis of future transport pathways: Application for the United Kingdom transport system 2010–2050," Energy, Elsevier, vol. 88(C), pages 849-862.
    11. Laura Felício & Sofia T. Henriques & André Serrenho & Tiago Domingos & Tânia Sousa, 2019. "Insights from Past Trends in Exergy Efficiency and Carbon Intensity of Electricity: Portugal, 1900–2014," Energies, MDPI, vol. 12(3), pages 1-22, February.
    12. Saidur, R. & Masjuki, H.H. & Jamaluddin, M.Y., 2007. "An application of energy and exergy analysis in residential sector of Malaysia," Energy Policy, Elsevier, vol. 35(2), pages 1050-1063, February.
    13. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    14. Mei Gong & Göran Wall, 2016. "Exergy Analysis of the Supply of Energy and Material Resources in the Swedish Society," Energies, MDPI, vol. 9(9), pages 1-16, September.
    15. Utlu, Zafer & Hepbasli, Arif, 2008. "Energetic and exergetic assessment of the industrial sector at varying dead (reference) state temperatures: A review with an illustrative example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1277-1301, June.
    16. Motasemi, F. & Afzal, Muhammad T. & Salema, Arshad Adam & Moghavvemi, M. & Shekarchian, M. & Zarifi, F. & Mohsin, R., 2014. "Energy and exergy utilization efficiencies and emission performance of Canadian transportation sector, 1990–2035," Energy, Elsevier, vol. 64(C), pages 355-366.
    17. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    18. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
    19. Chen, G.Q. & Chen, B., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 1: Fossil fuels and energy minerals," Energy Policy, Elsevier, vol. 35(4), pages 2038-2050, April.
    20. Bligh, David C. & Ismet Ugursal, V., 2012. "Extended exergy analysis of the economy of Nova Scotia, Canada," Energy, Elsevier, vol. 44(1), pages 878-890.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:1:p:833-:d:1023269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.