IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1792-d1343488.html
   My bibliography  Save this article

Willingness to Participate in Vehicle-to-Everything (V2X) in Sweden, 2022—Using an Electric Vehicle’s Battery for More Than Transport

Author

Listed:
  • Rahmat Khezri

    (Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

  • David Steen

    (Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

  • Le Anh Tuan

    (Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

Abstract

Vehicle-to-everything (V2X) refers to the technology that enables electric vehicles (EVs) to push their battery energy back to the grid. The system’s V2X integration includes key functions like V2G, V2H, V2B, etc. This paper explores the preferences of Swedish EV drivers in contributing to V2X programs through an online questionnaire. Respondents were asked to answer questions in three contexts: (1) claims related to their EV charging, (2) V2G application by EV, and (3) V2H application by EV. The respondents were questioned about the importance of control, pricing, energy sustainability and climate issues, impact on the battery, the acceptability of V2X, range anxiety, financial compensation, as well as how and where they prefer to charge the EV. The results of the survey indicate that Swedish EV drivers are more interested in the V2H application than in V2G. Additionally, they express more concern about range anxiety than battery degradation due to the V2X application.

Suggested Citation

  • Rahmat Khezri & David Steen & Le Anh Tuan, 2024. "Willingness to Participate in Vehicle-to-Everything (V2X) in Sweden, 2022—Using an Electric Vehicle’s Battery for More Than Transport," Sustainability, MDPI, vol. 16(5), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1792-:d:1343488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thompson, Andrew W. & Perez, Yannick, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Energy Policy, Elsevier, vol. 137(C).
    2. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion," Energy Policy, Elsevier, vol. 116(C), pages 422-432.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
    2. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
    3. Greaker, Mads & Hagem, Cathrine & Proost, Stef, 2022. "An economic model of vehicle-to-grid: Impacts on the electricity market and consumer cost of electric vehicles," Resource and Energy Economics, Elsevier, vol. 69(C).
    4. Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.
    5. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    6. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    7. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    8. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).
    9. Agbotiname Lucky Imoize & Hope Ikoghene Obakhena & Francis Ifeanyi Anyasi & Samarendra Nath Sur, 2022. "A Review of Energy Efficiency and Power Control Schemes in Ultra-Dense Cell-Free Massive MIMO Systems for Sustainable 6G Wireless Communication," Sustainability, MDPI, vol. 14(17), pages 1-38, September.
    10. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Rishabh Ghotge & Koen Philippe Nijssen & Jan Anne Annema & Zofia Lukszo, 2022. "Use before You Choose: What Do EV Drivers Think about V2G after Experiencing It?," Energies, MDPI, vol. 15(13), pages 1-22, July.
    12. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    13. Lind, Leandro & Chaves-Ávila, José Pablo & Valarezo, Orlando & Sanjab, Anibal & Olmos, Luis, 2024. "Baseline methods for distributed flexibility in power systems considering resource, market, and product characteristics," Utilities Policy, Elsevier, vol. 86(C).
    14. Julie Waldron & Lucelia Rodrigues & Sanchari Deb & Mark Gillott & Sophie Naylor & Chris Rimmer, 2024. "Exploring Opportunities for Vehicle-to-Grid Implementation through Demonstration Projects," Energies, MDPI, vol. 17(7), pages 1-27, March.
    15. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2021. "Rate design with distributed energy resources and electric vehicles: A Californian case study," Energy Economics, Elsevier, vol. 102(C).
    16. Zeng, Bo & Sun, Bo & Wei, Xuan & Gong, Dunwei & Zhao, Dongbo & Singh, Chanan, 2020. "Capacity value estimation of plug-in electric vehicle parking-lots in urban power systems: A physical-social coupling perspective," Applied Energy, Elsevier, vol. 265(C).
    17. García-Afonso, Óscar & González-Díaz, Benjamín, 2023. "Effectiveness of zero tailpipe vehicles to reduce CO2 emissions in isolated power systems, a realistic perspective: Tenerife Island test case," Energy, Elsevier, vol. 273(C).
    18. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Khardenavis, Amaiya & Hewage, Kasun & Perera, Piyaruwan & Shotorbani, Amin Mohammadpour & Sadiq, Rehan, 2021. "Mobile energy hub planning for complex urban networks: A robust optimization approach," Energy, Elsevier, vol. 235(C).
    20. Thompson, Andrew W. & Perez, Yannick, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Energy Policy, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1792-:d:1343488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.