IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11201-d1548638.html
   My bibliography  Save this article

Assessment of a Temperature-Based Artificial Neural Network Designed for Global Solar Radiation Estimation in Regions with Sparse Experimental Data

Author

Listed:
  • Enrique González-Plaza

    (Department of Physics, University of Oviedo, c/Federico García Lorca, nº18, 33007 Oviedo, Spain)

  • David García

    (Department of Energy, University of Oviedo, c/Wifredo Ricart, s/n, 33204 Gijón, Spain)

  • Jesús-Ignacio Prieto

    (Department of Physics, University of Oviedo, c/Federico García Lorca, nº18, 33007 Oviedo, Spain)

Abstract

The aim is to evaluate a model of monthly mean global solar radiation based on a simple ANN that uses geographic and temperature data as input variables and is designed for estimations in regions with few radiometric stations. Using data from 414 Spanish stations, the performance of the model is evaluated when both the number and the percentage of data collected for training the network are significantly modified while maintaining the clustering algorithms. The statistical indicators obtained show a compromise between achieving a lower mean error for all stations and limiting the maximum error at each station. In the worst case, the average error is less than 10% for all stations, and the maximum local error only exceeds 20% in less than 2% of the estimates. The least accurate predictions seem to be related to climate types where the clearness index tends to be higher in winter than in summer, which is the case in some locations on the northern Spanish coast. The results are consistent with estimates obtained for 16 non-Spanish stations, selected within the same input data range, suggesting that the variation of the clearness index over the year could be an important factor for local climate characterization.

Suggested Citation

  • Enrique González-Plaza & David García & Jesús-Ignacio Prieto, 2024. "Assessment of a Temperature-Based Artificial Neural Network Designed for Global Solar Radiation Estimation in Regions with Sparse Experimental Data," Sustainability, MDPI, vol. 16(24), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11201-:d:1548638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    2. Maria. C. Bueso & José Miguel Paredes-Parra & Antonio Mateo-Aroca & Angel Molina-García, 2020. "A Characterization of Metrics for Comparing Satellite-Based and Ground-Measured Global Horizontal Irradiance Data: A Principal Component Analysis Application," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    3. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    4. Aleksandr Gevorgian & Giovanni Pernigotto & Andrea Gasparella, 2024. "Addressing Data Scarcity in Solar Energy Prediction with Machine Learning and Augmentation Techniques," Energies, MDPI, vol. 17(14), pages 1-19, July.
    5. Urraca, R. & Martinez-de-Pison, E. & Sanz-Garcia, A. & Antonanzas, J. & Antonanzas-Torres, F., 2017. "Estimation methods for global solar radiation: Case study evaluation of five different approaches in central Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1098-1113.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).
    3. Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    5. Maldonado-Salguero, Patricia & Bueso-Sánchez, María Carmen & Molina-García, Ángel & Sánchez-Lozano, Juan Miguel, 2022. "Spatio-temporal dynamic clustering modeling for solar irradiance resource assessment," Renewable Energy, Elsevier, vol. 200(C), pages 344-359.
    6. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    7. Shouxiang Wang & Pengfei Dong & Yingjie Tian, 2017. "A Novel Method of Statistical Line Loss Estimation for Distribution Feeders Based on Feeder Cluster and Modified XGBoost," Energies, MDPI, vol. 10(12), pages 1-17, December.
    8. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    9. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    10. Mohammad Ehteram & Ali Najah Ahmed & Chow Ming Fai & Haitham Abdulmohsin Afan & Ahmed El-Shafie, 2019. "Accuracy Enhancement for Zone Mapping of a Solar Radiation Forecasting Based Multi-Objective Model for Better Management of the Generation of Renewable Energy," Energies, MDPI, vol. 12(14), pages 1-26, July.
    11. Almorox, Javier & Arnaldo, J.A. & Bailek, Nadjem & Martí, Pau, 2020. "Adjustment of the Angstrom-Prescott equation from Campbell-Stokes and Kipp-Zonen sunshine measures at different timescales in Spain," Renewable Energy, Elsevier, vol. 154(C), pages 337-350.
    12. Dasari, Hari Prasad & Desamsetti, Srinivas & Langodan, Sabique & Attada, Raju & Kunchala, Ravi Kumar & Viswanadhapalli, Yesubabu & Knio, Omar & Hoteit, Ibrahim, 2019. "High-resolution assessment of solar energy resources over the Arabian Peninsula," Applied Energy, Elsevier, vol. 248(C), pages 354-371.
    13. Xing Zhang & Zhuoqun Wei, 2019. "A Hybrid Model Based on Principal Component Analysis, Wavelet Transform, and Extreme Learning Machine Optimized by Bat Algorithm for Daily Solar Radiation Forecasting," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    14. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    15. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    16. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    17. Wang, Yuhan & Zhang, Chu & Fu, Yongyan & Suo, Leiming & Song, Shihao & Peng, Tian & Shahzad Nazir, Muhammad, 2023. "Hybrid solar radiation forecasting model with temporal convolutional network using data decomposition and improved artificial ecosystem-based optimization algorithm," Energy, Elsevier, vol. 280(C).
    18. Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Liu, Zhihe & Agathokleous, Evgenios & Yang, Xiumei & Hu, Wei & Clothier, Brent, 2023. "Short–term forecasting of daily evapotranspiration from rice using a modified Priestley–Taylor model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 277(C).
    19. Jun Su & Zhiyuan Zeng & Chaolong Tang & Zhiquan Liu & Tianyou Li, 2024. "A Photovoltaic Fault Diagnosis Method Integrating Photovoltaic Power Prediction and EWMA Control Chart," Energies, MDPI, vol. 17(17), pages 1-22, August.
    20. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11201-:d:1548638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.