IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp344-359.html
   My bibliography  Save this article

Spatio-temporal dynamic clustering modeling for solar irradiance resource assessment

Author

Listed:
  • Maldonado-Salguero, Patricia
  • Bueso-Sánchez, María Carmen
  • Molina-García, Ángel
  • Sánchez-Lozano, Juan Miguel

Abstract

Nowadays, with the development of international policies and agreements to promote the integration of renewable energy sources, mainly solar and wind, modeling the solar resource by including the spatio-temporal variability is crucial to determine future PV power plant locations and estimate potential power generation performances. However, contributions involving long-term periods and different time windows to explore such potential solar resource variability are generally scarce. Under this framework, the present paper proposes a methodology focused on characterizing and clustering the spatio-temporal solar resource variability through the global horizontal irradiance analysis. Hierarchical clustering technique is firstly used to classify the spatial data. Different time windows — from short-term to long-term data — can be subsequently evaluated by using various sources of information. The Spanish territory is selected as case study, considering 22-year period data (1999–2020) and 1,936,917 observations from online satellite database. Spatial variability and geographical clustering differences are discussed and compared depending on the selected time windows, identifying relevant spatial variations for some specific months. Additionally, some years present more variability as well, in line with the sunspot peak of the solar cycles. The proposed approach gives an alternative comprehensive spatio-temporal clustering and characterization of GHI evolution, providing a suitable methodology to help the current European sustainable energy transition.

Suggested Citation

  • Maldonado-Salguero, Patricia & Bueso-Sánchez, María Carmen & Molina-García, Ángel & Sánchez-Lozano, Juan Miguel, 2022. "Spatio-temporal dynamic clustering modeling for solar irradiance resource assessment," Renewable Energy, Elsevier, vol. 200(C), pages 344-359.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:344-359
    DOI: 10.1016/j.renene.2022.09.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Tierney & Dianne Cook, 2018. "Expanding tidy data principles to facilitate missing data exploration, visualization and assessment of imputations," Monash Econometrics and Business Statistics Working Papers 14/18, Monash University, Department of Econometrics and Business Statistics.
    2. Abhnil Amtesh Prasad & Merlinde Kay, 2020. "Assessment of Simulated Solar Irradiance on Days of High Intermittency Using WRF-Solar," Energies, MDPI, vol. 13(2), pages 1-22, January.
    3. Habte, Aron & Sengupta, Manajit & Gueymard, Christian & Golnas, Anastasios & Xie, Yu, 2020. "Long-term spatial and temporal solar resource variability over America using the NSRDB version 3 (1998–2017)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Maria. C. Bueso & José Miguel Paredes-Parra & Antonio Mateo-Aroca & Angel Molina-García, 2020. "A Characterization of Metrics for Comparing Satellite-Based and Ground-Measured Global Horizontal Irradiance Data: A Principal Component Analysis Application," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    5. Urraca, R. & Martinez-de-Pison, E. & Sanz-Garcia, A. & Antonanzas, J. & Antonanzas-Torres, F., 2017. "Estimation methods for global solar radiation: Case study evaluation of five different approaches in central Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1098-1113.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Shouxiang Wang & Pengfei Dong & Yingjie Tian, 2017. "A Novel Method of Statistical Line Loss Estimation for Distribution Feeders Based on Feeder Cluster and Modified XGBoost," Energies, MDPI, vol. 10(12), pages 1-17, December.
    3. Dasari, Hari Prasad & Desamsetti, Srinivas & Langodan, Sabique & Attada, Raju & Kunchala, Ravi Kumar & Viswanadhapalli, Yesubabu & Knio, Omar & Hoteit, Ibrahim, 2019. "High-resolution assessment of solar energy resources over the Arabian Peninsula," Applied Energy, Elsevier, vol. 248(C), pages 354-371.
    4. Shen‐Ming Lee & Truong‐Nhat Le & Phuoc‐Loc Tran & Chin‐Shang Li, 2022. "Investigating the association of a sensitive attribute with a random variable using the Christofides generalised randomised response design and Bayesian methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1471-1502, November.
    5. Dimitris Drikakis & Talib Dbouk, 2022. "The Role of Computational Science in Wind and Solar Energy: A Critical Review," Energies, MDPI, vol. 15(24), pages 1-20, December.
    6. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    7. Prasad, Abhnil Amtesh & Nishant, Nidhi & Kay, Merlinde, 2022. "Dust cycle and soiling issues affecting solar energy reductions in Australia using multiple datasets," Applied Energy, Elsevier, vol. 310(C).
    8. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    9. Tapia, Mariela & Heinemann, Detlev & Ballari, Daniela & Zondervan, Edwin, 2022. "Spatio-temporal characterization of long-term solar resource using spatial functional data analysis: Understanding the variability and complementarity of global horizontal irradiance in Ecuador," Renewable Energy, Elsevier, vol. 189(C), pages 1176-1193.
    10. Prasad, Abhnil Amtesh & Yang, Yuqing & Kay, Merlinde & Menictas, Chris & Bremner, Stephen, 2021. "Synergy of solar photovoltaics-wind-battery systems in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
    13. Abhnil Amtesh Prasad & Merlinde Kay, 2021. "Prediction of Solar Power Using Near-Real Time Satellite Data," Energies, MDPI, vol. 14(18), pages 1-20, September.
    14. Caitlin M. Berry & William Kleiber & Bri‐Mathias Hodge, 2023. "Subordinated Gaussian processes for solar irradiance," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    15. Yeom, Jong-Min & Deo, Ravinesh C. & Adamwoski, Jan F. & Chae, Taebyeong & Kim, Dong-Su & Han, Kyung-Soo & Kim, Do-Yong, 2020. "Exploring solar and wind energy resources in North Korea with COMS MI geostationary satellite data coupled with numerical weather prediction reanalysis variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    17. Mohamed Chaibi & EL Mahjoub Benghoulam & Lhoussaine Tarik & Mohamed Berrada & Abdellah El Hmaidi, 2021. "An Interpretable Machine Learning Model for Daily Global Solar Radiation Prediction," Energies, MDPI, vol. 14(21), pages 1-19, November.
    18. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).
    19. Cheng, Xinghong & Ye, Dong & Shen, Yanbo & Li, Deping & Feng, Jinming, 2022. "Studies on the improvement of modelled solar radiation and the attenuation effect of aerosol using the WRF-Solar model with satellite-based AOD data over north China," Renewable Energy, Elsevier, vol. 196(C), pages 358-365.
    20. Dariusz Czekalski & Paweł Obstawski & Tomasz Bakoń, 2020. "Possibilities to Estimate Daily Solar Radiation on 2-Axis Tracking Plane Using a Model Based on Temperature Amplitude," Sustainability, MDPI, vol. 12(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:344-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.