IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9998-d1522278.html
   My bibliography  Save this article

Olfactory Profile and Stochastic Analysis: An Innovative Approach for Predicting the Physicochemical Characteristics of Recycled Waste Cooking Oils for Sustainable Biodiesel Production

Author

Listed:
  • Suelen Conceição de Carvalho

    (Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, Lorena 12602-810, SP, Brazil)

  • Maryana Mathias Costa Silva

    (Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, Lorena 12602-810, SP, Brazil)

  • Adriano Francisco Siqueira

    (Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena 12602-810, SP, Brazil)

  • Mariana Pereira de Melo

    (Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena 12602-810, SP, Brazil)

  • Domingos Sávio Giordani

    (Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, Lorena 12602-810, SP, Brazil)

  • Tatiane de Oliveira Souza Senra

    (Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena 12602-810, SP, Brazil)

  • Ana Lucia Gabas Ferreira

    (Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena 12602-810, SP, Brazil)

Abstract

The efficient, economical, and sustainable production of biodiesel from waste cooking oils (WCOs) depends on the availability of simple, rapid, and low-cost methods to test the quality of potential feedstocks. The aim of this study was to establish the applicability of stochastic modeling of e-nose profiles in the evaluation of recycled WCO characteristics. Olfactory profiles of 10 WCOs were determined using a Sensigent Cyranose ® 320 chemical vapor-sensing device with a 32 sensor-array, and a stepwise multiple linear regression (MLR) analysis was performed to select stochastic parameters (explanatory variables) for inclusion in the final predictive models of the physicochemical properties of the WCOs. The most important model parameters for the characterization of WCOs were those relating to the time of inception of the e-nose signal “plateau” and to the concentration of volatile organic compounds (VOCs) in the sensor region. A comparison of acid values, peroxide values, water contents, and kinematic viscosities predicted by the MLR models with those determined by conventional laboratory methods revealed that goodness of fit and predictor accuracy varied from good to excellent, with all metric values >90%. Combining e-nose profiling with stochastic modeling was successful in predicting the physicochemical characteristics of WCOs and could be used to select suitable raw materials for efficient and sustainable biodiesel production.

Suggested Citation

  • Suelen Conceição de Carvalho & Maryana Mathias Costa Silva & Adriano Francisco Siqueira & Mariana Pereira de Melo & Domingos Sávio Giordani & Tatiane de Oliveira Souza Senra & Ana Lucia Gabas Ferreira, 2024. "Olfactory Profile and Stochastic Analysis: An Innovative Approach for Predicting the Physicochemical Characteristics of Recycled Waste Cooking Oils for Sustainable Biodiesel Production," Sustainability, MDPI, vol. 16(22), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9998-:d:1522278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. César, Aldara da Silva & Werderits, Dayana Elizabeth & de Oliveira Saraiva, Gabriela Leal & Guabiroba, Ricardo César da Silva, 2017. "The potential of waste cooking oil as supply for the Brazilian biodiesel chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 246-253.
    2. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    2. José Hidalgo-Crespo & César I. Alvarez-Mendoza & Manuel Soto & Jorge Luis Amaya-Rivas, 2022. "Towards a Circular Economy Development for Household Used Cooking Oil in Guayaquil: Quantification, Characterization, Modeling, and Geographical Mapping," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    3. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    4. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Sebayang, Abdi Hanra & Ideris, Fazril & Silitonga, Arridina Susan & Shamsuddin, A.H. & Zamri, M.F.M.A. & Pulungan, Muhammad Anhar & Siahaan, Sihar & Alfansury, Munawar & Kusumo, F. & Milano, Jassinnee, 2023. "Optimization of ultrasound-assisted oil extraction from Carica candamarcensis; A potential Oleaginous tropical seed oil for biodiesel production," Renewable Energy, Elsevier, vol. 211(C), pages 434-444.
    6. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    7. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Chiatti, Giancarlo & Chiavola, Ornella & Palmieri, Fulvio, 2017. "Vibration and acoustic characteristics of a city-car engine fueled with biodiesel blends," Applied Energy, Elsevier, vol. 185(P1), pages 664-670.
    9. Zhang, Huiming & Zheng, Yu & Cao, Jie & Qiu, Yueming, 2017. "Has government intervention effectively encouraged the use of waste cooking oil as an energy source? Comparison of two Chinese biofuel companies," Energy, Elsevier, vol. 140(P1), pages 708-715.
    10. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    11. Wang, Yi-Tong & Yang, Xing-Xia & Xu, Jie & Wang, Hong-Li & Wang, Zi-Bing & Zhang, Lei & Wang, Shao-Long & Liang, Jing-Long, 2019. "Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst," Renewable Energy, Elsevier, vol. 139(C), pages 688-695.
    12. Martinez-Guerra, Edith & Gude, Veera Gnaneswar & Mondala, Andro & Holmes, William & Hernandez, Rafael, 2014. "Microwave and ultrasound enhanced extractive-transesterification of algal lipids," Applied Energy, Elsevier, vol. 129(C), pages 354-363.
    13. Alberto Mannu & Gina Vlahopoulou & Paolo Urgeghe & Monica Ferro & Alessandra Del Caro & Alessandro Taras & Sebastiano Garroni & Jonathan P. Rourke & Roberto Cabizza & Giacomo L. Petretto, 2019. "Variation of the Chemical Composition of Waste Cooking Oils upon Bentonite Filtration," Resources, MDPI, vol. 8(2), pages 1-15, June.
    14. García-Martín, Juan Francisco & Barrios, Carmen C. & Alés-Álvarez, Francisco-Javier & Dominguez-Sáez, Aida & Alvarez-Mateos, Paloma, 2018. "Biodiesel production from waste cooking oil in an oscillatory flow reactor. Performance as a fuel on a TDI diesel engine," Renewable Energy, Elsevier, vol. 125(C), pages 546-556.
    15. Tsoutsos, T.D. & Tournaki, S. & Paraíba, O. & Kaminaris, S.D., 2016. "The Used Cooking Oil-to-biodiesel chain in Europe assessment of best practices and environmental performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 74-83.
    16. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    17. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.
    19. Dehghan, Leila & Golmakani, Mohammad-Taghi & Hosseini, Seyed Mohammad Hashem, 2019. "Optimization of microwave-assisted accelerated transesterification of inedible olive oil for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 915-922.
    20. Rattanaphra, Dussadee & Soodjit, Phansiri & Thanapimmetha, Anusith & Saisriyoot, Maythee & Srinophakun, Penjit, 2019. "Synthesis, characterization and catalytic activity studies of lanthanum oxide from Thai monazite ore for biodiesel production," Renewable Energy, Elsevier, vol. 131(C), pages 1128-1137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9998-:d:1522278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.