IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9922-d1520751.html
   My bibliography  Save this article

China’s Photovoltaic Development and Its Spillover Effects on Carbon Footprint at Cross-Regional Scale: Insights from the Largest Photovoltaic Industry in Northwest Arid Area

Author

Listed:
  • Zhun Qu

    (School of Economics, Lanzhou University, Lanzhou 730000, China)

  • Chong Jiang

    (Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
    State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    State Key Laboratory of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR, CASM, Beijing 100036, China
    Middle Yarlung Zangbo River Natural Resources Observation and Research Station of Tibet Autonomous Region, Chengdu 610036, China)

  • Yixin Wang

    (Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, China)

  • Ran Wang

    (Langfang General Survey of Natural Resources Center, China Geological Survey, Langfang 065000, China)

  • Ying Zhao

    (Dongying Base of Integration between Industry and Education for High-Quality Development of Modern Agriculture, Ludong University, Dongying 257509, China)

  • Suchang Yang

    (School of Economics, Lanzhou University, Lanzhou 730000, China)

Abstract

Solar energy plays a crucial role in mitigating climate change and transitioning toward green energy. In China (particularly Northwest China), photovoltaic (PV) development is recognized as a co-benefit and nature-based solution for concurrently combating land degradation and producing clean energy. However, the existing literature on the subject is limited to the local effects of PV power station construction and ignores the spillover environmental effects in distant regions. Thus, a hotspot of PV development in Northwest China was selected as a case to quantify the spill-over impacts of PV development in Qinghai Province on cross-regional economy and the environment using an environmentally extended multi-regional input–output approach and related socioeconomic and environmental statistical data. A cross-regional carbon footprint analysis revealed that the eastern region of Qinghai Province had the highest carbon footprint, followed by the southwestern, central, southern, northwestern, northern, and northeastern regions; the production and supply sectors of electricity and heat were the primary sources of carbon emissions, followed by metal smelting and rolling processing products, non-metallic mineral products, and the transportation, warehousing, and postal sectors. In addition, the PV development in Qinghai Province strongly supports the electricity demand in the central and eastern coastal areas, while substantially reducing the carbon emissions in the eastern, southwestern, and central regions (through the distant supply of PV products). We quantified the spillover effects of PV development in Qinghai Province and address the challenges of PV development in the carbon emission reduction strategies implemented at the regional and cross-regional scales; our findings will support policymakers in developing plans that ensure sustainable energy supply and help China to achieve its carbon neutrality goals.

Suggested Citation

  • Zhun Qu & Chong Jiang & Yixin Wang & Ran Wang & Ying Zhao & Suchang Yang, 2024. "China’s Photovoltaic Development and Its Spillover Effects on Carbon Footprint at Cross-Regional Scale: Insights from the Largest Photovoltaic Industry in Northwest Arid Area," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9922-:d:1520751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Hongtao & Cao, Shuang & Su, Zimeng & Zhuang, Yang, 2024. "China's future energy vision: Multi-scenario simulation based on energy consumption structure under dual carbon targets," Energy, Elsevier, vol. 301(C).
    2. ten Raa,Thijs, 2006. "The Economics of Input-Output Analysis," Cambridge Books, Cambridge University Press, number 9780521602679, November.
    3. Li, Minyang & Lin, Boqiang, 2024. "Clean energy business expansion and financing availability: The role of government and market," Energy Policy, Elsevier, vol. 191(C).
    4. Wu, Di & Zhang, Yuqian & Liu, Bo & Wang, Keke & Wang, Zijing & Kang, Junjie, 2024. "Optimization of coal power phaseout pathways ensuring energy security: Evidence from Shandong, China's largest coal power province," Energy Policy, Elsevier, vol. 192(C).
    5. Zhu, Yongnan & Ke, Jing & Wang, Jianhua & Liu, He & Jiang, Shan & Blum, Helcio & Zhao, Yong & He, Guohua & Meng, Yuan & Su, Jian, 2020. "Water transfer and losses embodied in the West–East electricity transmission project in China," Applied Energy, Elsevier, vol. 275(C).
    6. Tian, Chenchunyang & Tan, Qiaofeng & Fang, Guohua & Wen, Xin, 2024. "Hydrogen production to combat power surpluses in hybrid hydro–wind–photovoltaic power systems," Applied Energy, Elsevier, vol. 371(C).
    7. Hou, Guofu & Sun, Honghang & Jiang, Ziying & Pan, Ziqiang & Wang, Yibo & Zhang, Xiaodan & Zhao, Ying & Yao, Qiang, 2016. "Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China," Applied Energy, Elsevier, vol. 164(C), pages 882-890.
    8. L. Kruitwagen & K. T. Story & J. Friedrich & L. Byers & S. Skillman & C. Hepburn, 2021. "A global inventory of photovoltaic solar energy generating units," Nature, Nature, vol. 598(7882), pages 604-610, October.
    9. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Li, Ying & Huang, Yuping & Liang, Yu & Song, Chenxi & Liao, Suliang, 2024. "Economic and carbon reduction potential assessment of vehicle-to-grid development in guangdong province," Energy, Elsevier, vol. 302(C).
    11. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Furong & Tang, Haiping, 2024. "Sustainable photovoltaic power generation spatial planning through ecosystem service valuation: A case study of the Qinghai-Tibet plateau," Renewable Energy, Elsevier, vol. 222(C).
    2. Zhu, Rui & Lau, Wing Sze & You, Linlin & Yan, Jinyue & Ratti, Carlo & Chen, Min & Wong, Man Sing & Qin, Zheng, 2024. "Multi-sourced data modelling of spatially heterogenous life-cycle carbon mitigation from installed rooftop photovoltaics: A case study in Singapore," Applied Energy, Elsevier, vol. 362(C).
    3. Ailing Wang & Qiongfang Lin & Chunlu Liu & Liu Yang & Shaonan Sun, 2024. "Sustainable Energy Development: Reviewing Carbon Emission Reduction in Photovoltaic Power Systems," Sustainability, MDPI, vol. 16(23), pages 1-22, November.
    4. Li, Xiaochun & He, Ze & Xia, Siyou & Yang, Yu, 2024. "Greenness change associated with construction and operation of photovoltaic solar energy in China," Renewable Energy, Elsevier, vol. 226(C).
    5. Jiayu Bao & Xianglong Li & Tao Yu & Liangliang Jiang & Jialin Zhang & Fengjiao Song & Wenqiang Xu, 2024. "Are Regions Conducive to Photovoltaic Power Generation Demonstrating Significant Potential for Harnessing Solar Energy via Photovoltaic Systems?," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    6. Bangjian Wang & Lihua Xu & Tianze Chen & Bowen Hou & Jianxun Liu & Yijun Shen & Rao Kuang, 2024. "High-Temperature Mechanical Properties of Basalt Fibers: A Step Towards Fire-Safe Materials for Photovoltaic Applications," Sustainability, MDPI, vol. 16(24), pages 1-13, December.
    7. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    8. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    9. Pedro Gomes da Cruz Filho & Danielle Devequi Gomes Nunes & Hayna Malta Santos & Alex Álisson Bandeira Santos & Bruna Aparecida Souza Machado, 2023. "From Patents to Progress: Genetic Algorithms in Harmonic Distortion Monitoring Technology," Energies, MDPI, vol. 16(24), pages 1-21, December.
    10. Lechón, Y. & de la Rúa, C. & Rodríguez, I. & Caldés, N., 2019. "Socioeconomic implications of biofuels deployment through an Input-Output approach. A case study in Uruguay," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 178-191.
    11. Xu, Guangyue & Yang, Hualiu & Schwarz, Peter, 2022. "A strengthened relationship between electricity and economic growth in China: An empirical study with a structural equation model," Energy, Elsevier, vol. 241(C).
    12. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. André Lorentz & Maria Savona, 2009. "Evolutionary micro-dynamics and changes in the economic structure," Springer Books, in: Uwe Cantner & Jean-Luc Gaffard & Lionel Nesta (ed.), Schumpeterian Perspectives on Innovation, Competition and Growth, pages 137-160, Springer.
    14. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    15. Florian Blöchl & Fabian J. Theis & Fernando Vega-Redondo & Eric O'N. Fisher, 2010. "Which Sectors of a Modern Economy are most Central?," CESifo Working Paper Series 3175, CESifo.
    16. Li, Qingqing & Shi, Jinbo & Li, Wenxiang & Xiao, Siyun & Song, Ke & Zhang, Yongbo & Wang, Zhenqi & Gu, Jie & Liu, Bo & Lai, Xiaoming, 2024. "An efficient tool for real-time global carbon neutrality with credibility of delicacy management: A Modelx + MRV + O system," Applied Energy, Elsevier, vol. 372(C).
    17. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    18. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    20. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9922-:d:1520751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.