IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10428-d1531850.html
   My bibliography  Save this article

Sustainable Energy Development: Reviewing Carbon Emission Reduction in Photovoltaic Power Systems

Author

Listed:
  • Ailing Wang

    (School of Management, Zhengzhou University, Zhengzhou 450001, China)

  • Qiongfang Lin

    (School of Management, Zhengzhou University, Zhengzhou 450001, China)

  • Chunlu Liu

    (School of Architecture and Built Environment, Deakin University Geelong Waterfront Campus, Geelong, VIC 3220, Australia)

  • Liu Yang

    (School of Management, Zhengzhou University, Zhengzhou 450001, China)

  • Shaonan Sun

    (School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

Abstract

As a driving force of sustainable energy development, photovoltaic power is instrumental in diminishing greenhouse gas emissions and is vital for achieving our targets for a sustainable energy future. Therefore, a systematic review of carbon emission reduction in photovoltaic power systems (CERPPS) is very important for a deeper understanding and advancing the development in this field. This study leverages the Web of Science (WOS) Core Collection as a primary database and applies VOSviewer and CiteSpace tools to perform a bibliometric analysis of publications related to CERPPS, spanning from 2006 to June 2024. This study has elucidated the research progress from both a quantitative and visual perspective and delineated the evolution of research hotspots. Analysis of the results is done on the basis of annual publications, authorship, institutional affiliations, national origins, journal publications, references, and keywords. The analysis indicates that recycling, the large-scale deployment of photovoltaic modules, energy storage management within photovoltaic power systems, and large-scale deployment of photovoltaic power systems are hot topics. Future research trends encompass the study of new photovoltaic materials, life cycle assessment and recycling, and the development of smart photovoltaic power systems. This study provides an overview of the evolution of CERPPS’s main research directions, which establishes a reference framework for scholars to get a deeper insight into the most recent advancements and research outlooks within CERPPS, and also fosters the advancement of photovoltaic power systems towards a more low-carbon and sustainable trajectory.

Suggested Citation

  • Ailing Wang & Qiongfang Lin & Chunlu Liu & Liu Yang & Shaonan Sun, 2024. "Sustainable Energy Development: Reviewing Carbon Emission Reduction in Photovoltaic Power Systems," Sustainability, MDPI, vol. 16(23), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10428-:d:1531850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elisa Calliari & Jaroslav Mysiak & Lisa Vanhala, 2020. "A digital climate summit to maintain Paris Agreement ambition," Nature Climate Change, Nature, vol. 10(6), pages 480-480, June.
    2. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    3. Steinar Andresen & Jon Birger Skjærseth & Torbjørg Jevnaker & Jørgen Wettestad, 2016. "The Paris Agreement: Consequences for the EU and Carbon Markets?," Politics and Governance, Cogitatio Press, vol. 4(3), pages 188-196.
    4. Novacheck, Joshua & Johnson, Jeremiah X., 2015. "The environmental and cost implications of solar energy preferences in Renewable Portfolio Standards," Energy Policy, Elsevier, vol. 86(C), pages 250-261.
    5. Hou, Guofu & Sun, Honghang & Jiang, Ziying & Pan, Ziqiang & Wang, Yibo & Zhang, Xiaodan & Zhao, Ying & Yao, Qiang, 2016. "Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China," Applied Energy, Elsevier, vol. 164(C), pages 882-890.
    6. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    7. Vivek Kumar Singh & Prashasti Singh & Mousumi Karmakar & Jacqueline Leta & Philipp Mayr, 2021. "The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5113-5142, June.
    8. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    9. Pacca, Sergio & Sivaraman, Deepak & Keoleian, Gregory A., 2007. "Parameters affecting the life cycle performance of PV technologies and systems," Energy Policy, Elsevier, vol. 35(6), pages 3316-3326, June.
    10. Deng, Rong & Chang, Nathan L. & Ouyang, Zi & Chong, Chee Mun, 2019. "A techno-economic review of silicon photovoltaic module recycling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 532-550.
    11. Meng, Xin & Yu, Yanni, 2023. "Can renewable energy portfolio standards and carbon tax policies promote carbon emission reduction in China's power industry?," Energy Policy, Elsevier, vol. 174(C).
    12. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    13. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adriana Ana Maria Davidescu & Margareta-Stela Florescu & Liviu Cosmin Mosora & Mihaela Hrisanta Mosora & Eduard Mihai Manta, 2022. "A Bibliometric Analysis of Research Publications of the Bucharest University of Economic Studies in Time of Pandemics: Implications for Teachers’ Professional Publishing Activity," IJERPH, MDPI, vol. 19(14), pages 1-36, July.
    2. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    3. Marek Kwiek & Wojciech Roszka, 2022. "Academic vs. biological age in research on academic careers: a large-scale study with implications for scientifically developing systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3543-3575, June.
    4. Ignacio Rodríguez-Rodríguez & José-Víctor Rodríguez & Niloofar Shirvanizadeh & Andrés Ortiz & Domingo-Javier Pardo-Quiles, 2021. "Applications of Artificial Intelligence, Machine Learning, Big Data and the Internet of Things to the COVID-19 Pandemic: A Scientometric Review Using Text Mining," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
    5. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    6. Zhentao Liang & Jin Mao & Kun Lu & Gang Li, 2021. "Finding citations for PubMed: a large-scale comparison between five freely available bibliographic data sources," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9519-9542, December.
    7. Dušan Nikolić & Dragan Ivanović & Lidija Ivanović, 2024. "An open-source tool for merging data from multiple citation databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4573-4595, July.
    8. Secinaro, Silvana & Calandra, Davide & Lanzalonga, Federico & Ferraris, Alberto, 2022. "Electric vehicles’ consumer behaviours: Mapping the field and providing a research agenda," Journal of Business Research, Elsevier, vol. 150(C), pages 399-416.
    9. Ruth Zárate Rueda & Yolima Ivonne Beltrán Villamizar & Luis Eduardo Becerra Ardila, 2023. "A Retrospective Approach to Pro-Environmental Behavior from Environmental Education: An Alternative from Sustainable Development," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    10. Minxi Wang & Ping Liu & Zhaoliang Gu & Hong Cheng & Xin Li, 2019. "A Scientometric Review of Resource Recycling Industry," IJERPH, MDPI, vol. 16(23), pages 1-18, November.
    11. Philippe Aghion & Celine Antonin & Luc Paluskiewicz & David Stromberg & Xueping Sun & Raphael Wargon, 2023. "Does Chinese research hinge on US co-authors? Evidence from the China Initiative," POID Working Papers 073, Centre for Economic Performance, LSE.
    12. Philip Hallinger & Ray Wang, 2020. "The Evolution of Simulation-Based Learning Across the Disciplines, 1965–2018: A Science Map of the Literature," Simulation & Gaming, , vol. 51(1), pages 9-32, February.
    13. Astrid Kainzbauer & Parisa Rungruang & Philip Hallinger, 2021. "How Does Research on Sustainable Human Resource Management Contribute to Corporate Sustainability: A Document Co-Citation Analysis, 1982–2021," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    14. Carlos Sánchez‐Camacho & Rocío Carranza & David Martín‐Consuegra & Estrella Díaz, 2022. "Evolution, trends and future research lines in corporate social responsibility and tourism: A bibliometric analysis and science mapping," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(3), pages 462-476, June.
    15. Gabriel Alves Vieira & Jacqueline Leta, 2024. "biblioverlap: an R package for document matching across bibliographic datasets," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4513-4527, July.
    16. Haochen Qian & Fan Zhang & Bing Qiu, 2023. "Deciphering the Evolution, Frontier, and Knowledge Clustering in Sustainable City Planning: A 60-Year Interdisciplinary Review," Sustainability, MDPI, vol. 15(24), pages 1-27, December.
    17. Silvia Blasi & Silvia Rita Sedita, 2022. "Mapping the emergence of a new organisational form: An exploration of the intellectual structure of the B Corp research," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(1), pages 107-123, January.
    18. Homero Rodríguez-Insuasti & Néstor Montalván-Burbano & Otto Suárez-Rodríguez & Marcela Yonfá-Medranda & Katherine Parrales-Guerrero, 2022. "Creative Economy: A Worldwide Research in Business, Management and Accounting," Sustainability, MDPI, vol. 14(23), pages 1-27, November.
    19. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.
    20. Andrea Mulazzani & Panagiotis Eleftheriadis & Sonia Leva, 2022. "Recycling c-Si PV Modules: A Review, a Proposed Energy Model and a Manufacturing Comparison," Energies, MDPI, vol. 15(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10428-:d:1531850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.