IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p10064-d1523893.html
   My bibliography  Save this article

Enhancing Construction Management Digital Twins Through Process Mining of Progress Logs

Author

Listed:
  • Yongzhi Wang

    (Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China)

  • Shaoming Liao

    (Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China)

  • Zhiqun Gong

    (China Construction Infrastructure Co., Ltd., Beijing 100044, China)

  • Fei Deng

    (School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China)

  • Shiyou Yin

    (Shanghai Tongzhu Information Technology Co., Ltd., Shanghai 201100, China)

Abstract

Large-scale infrastructure projects involve numerous complex processes, and even small construction management (CM) deficiencies can lead to significant resource waste. Digital twins (DTs) offer a potential solution to the management side of the problem. The current DT models focus on real-time physical space mapping, which causes the fragmentation of process data in servers and limits lifecycle algorithm implementation. In this paper, we propose a DT framework that integrates process twins to achieve process discovery through process mining and that serves as a supplement to DTs. The proposed framework was validated in a highway project. Based on BIM, GIS, and UAV physical entity twins, construction logs were collected, and process discovery was performed on them using process mining techniques, achieving process mapping and conformance checking for the process twins. The main conclusions are as follows: (1) the process twins accurately reflect the actual construction process, addressing the lack of process information in CM DTs; (2) process variants can be used to analyze abnormal changes in construction methods and identify potential construction risks in advance; (3) sudden changes in construction nodes during activities can affect resource allocation across multiple subsequent stages; (4) process twins can be used to visualize construction schedule risks, such as lead and lag times. The significance of this paper lies in the construction of process twins to complement the existing DT framework, providing a solution to the lost process relationships in DTs, enabling better process reproduction, and facilitating prediction and optimization. In future work, we will concentrate on conducting more in-depth research on process twins, drawing from a wider range of data sources and advancing intelligent process prediction techniques.

Suggested Citation

  • Yongzhi Wang & Shaoming Liao & Zhiqun Gong & Fei Deng & Shiyou Yin, 2024. "Enhancing Construction Management Digital Twins Through Process Mining of Progress Logs," Sustainability, MDPI, vol. 16(22), pages 1-29, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10064-:d:1523893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/10064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/10064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fei Tao & Qinglin Qi, 2019. "Make more digital twins," Nature, Nature, vol. 573(7775), pages 490-491, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian-Guo Duan & Tian-Yu Ma & Qing-Lei Zhang & Zhen Liu & Ji-Yun Qin, 2023. "Design and application of digital twin system for the blade-rotor test rig," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 753-769, February.
    2. Xinzhou Wu & Zhe Cheng & Victor E. Kuzmichev, 2023. "Dynamic Fit Optimization and Effect Evaluation of a Female Wetsuit Based on Virtual Technology," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    3. Zio, Enrico & Miqueles, Leonardo, 2024. "Digital twins in safety analysis, risk assessment and emergency management," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    4. Hongjun Li & Yu Yang & Chi Zhang & Chengjun Zhang & Wei Chen, 2023. "Visualization Monitoring of Industrial Detonator Automatic Assembly Line Based on Digital Twin," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    5. Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
    6. Dapai Shi & Jingyuan Zhao & Chika Eze & Zhenghong Wang & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Artificial Intelligence Framework for Battery Management System," Energies, MDPI, vol. 16(11), pages 1-21, May.
    7. Xueru Zhang & Dennis K. J. Lin & Lin Wang, 2023. "Digital Triplet: A Sequential Methodology for Digital Twin Learning," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    8. Milena Kajba & Borut Jereb & Tina Cvahte Ojsteršek, 2023. "Exploring Digital Twins in the Transport and Energy Fields: A Bibliometrics and Literature Review Approach," Energies, MDPI, vol. 16(9), pages 1-23, May.
    9. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    10. Jaljolie, Ruba & Riekkinen, Kirsikka & Dalyot, Sagi, 2021. "A topological-based approach for determining spatial relationships of complex volumetric parcels in land administration systems," Land Use Policy, Elsevier, vol. 109(C).
    11. Muhammad Ali Musarat & Alishba Sadiq & Wesam Salah Alaloul & Mohamed Mubarak Abdul Wahab, 2022. "A Systematic Review on Enhancement in Quality of Life through Digitalization in the Construction Industry," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    12. Chao Ke & Xiuyan Pan & Pan Wan & Zixi Huang & Zhigang Jiang, 2023. "An Intelligent Redesign Method for Used Products Based on Digital Twin," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    13. Dianyou Yu & Zheng He, 2022. "Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: advances, challenges, and opportunities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 1-36, May.
    14. Farzam Farbiz & Mohd Salahuddin Habibullah & Brahim Hamadicharef & Tomasz Maszczyk & Saurabh Aggarwal, 2023. "Knowledge-embedded machine learning and its applications in smart manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2889-2906, October.
    15. Junli Liu & Deyu Zhang & Zhongpeng Liu & Tianyu Guo & Yanyan Yan, 2024. "Construction of a Digital Twin System and Dynamic Scheduling Simulation Analysis of a Flexible Assembly Workshops with Island Layout," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    16. Pin Wu & Lulu Ji & Wenyan Yuan & Zhitao Liu & Tiantian Tang, 2023. "A Digital Twin Framework Embedded with POD and Neural Network for Flow Field Monitoring of Push-Plate Kiln," Future Internet, MDPI, vol. 15(2), pages 1-20, January.
    17. Jieyin Lyu & Shouqin Zhou & Jingang Liu & Bingchun Jiang, 2023. "Intelligent-Technology-Empowered Active Emergency Command Strategy for Urban Hazardous Chemical Disaster Management," Sustainability, MDPI, vol. 15(19), pages 1-28, September.
    18. Majidi Nezhad, Meysam & Neshat, Mehdi & Sylaios, Georgios & Astiaso Garcia, Davide, 2024. "Marine energy digitalization digital twin's approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10064-:d:1523893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.