IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i2p51-d1049937.html
   My bibliography  Save this article

A Digital Twin Framework Embedded with POD and Neural Network for Flow Field Monitoring of Push-Plate Kiln

Author

Listed:
  • Pin Wu

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Lulu Ji

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Wenyan Yuan

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Zhitao Liu

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Tiantian Tang

    (Chengdu Xingyun Zhilian Technology Co. Ltd., Chengdu 610000, China)

Abstract

The push-plate kiln is a kind of kiln equipment widely used in the oxygen-free sintering of high-temperature alloy materials. Its flow field monitoring has an important application value for the manufacturing industry. However, traditional simulation methods cannot meet the requirements of real-time applications due to the high computational cost and being time-consuming. The rapid development of artificial intelligence technology will empower the traditional manufacturing industry. In this paper, we propose a data-driven digital twin framework for real-time flow field prediction by combining the CFD modeling simulation, IoT, and deep learning technologies. The framework integrates geometric, rule, physical, and neural network models to achieve the real-time simulation of physical and twin objects. The proper orthogonal decomposition (POD) and multiscale convolutional neural network (MCNN) are innovatively embedded into the framework. The POD is used to map high-dimensional data to low-dimensional features, and the MCNN is used to construct models predicting low-dimensional features for fast flow field prediction. The effectiveness of the proposed model is verified by the push-plate kiln case. The results show that the digital twin can quickly predict multi-physics fields based on the perceptual data to achieve the real-time evaluation of the operating state of the push-plate kiln.

Suggested Citation

  • Pin Wu & Lulu Ji & Wenyan Yuan & Zhitao Liu & Tiantian Tang, 2023. "A Digital Twin Framework Embedded with POD and Neural Network for Flow Field Monitoring of Push-Plate Kiln," Future Internet, MDPI, vol. 15(2), pages 1-20, January.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:51-:d:1049937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/2/51/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/2/51/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kung-Jeng Wang & Ying-Hao Lee & Septianda Angelica, 2021. "Digital twin design for real-time monitoring – a case study of die cutting machine," International Journal of Production Research, Taylor & Francis Journals, vol. 59(21), pages 6471-6485, November.
    2. Fei Tao & Qinglin Qi, 2019. "Make more digital twins," Nature, Nature, vol. 573(7775), pages 490-491, September.
    3. Michael W. Grieves, 2005. "Product lifecycle management: the new paradigm for enterprises," International Journal of Product Development, Inderscience Enterprises Ltd, vol. 2(1/2), pages 71-84.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dianyou Yu & Zheng He, 2022. "Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: advances, challenges, and opportunities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 1-36, May.
    2. Majidi Nezhad, Meysam & Neshat, Mehdi & Sylaios, Georgios & Astiaso Garcia, Davide, 2024. "Marine energy digitalization digital twin's approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Jian-Guo Duan & Tian-Yu Ma & Qing-Lei Zhang & Zhen Liu & Ji-Yun Qin, 2023. "Design and application of digital twin system for the blade-rotor test rig," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 753-769, February.
    4. Maria Mercanti-Guérin, 2021. "From Perceived Creativity To Status Quo Bias The Case Of Digital Twins In The Home," Post-Print hal-03450262, HAL.
    5. Chen, Ziyue & Huang, Lizhen, 2021. "Digital twins for information-sharing in remanufacturing supply chain: A review," Energy, Elsevier, vol. 220(C).
    6. Hassan Alimam & Giovanni Mazzuto & Marco Ortenzi & Filippo Emanuele Ciarapica & Maurizio Bevilacqua, 2023. "Intelligent Retrofitting Paradigm for Conventional Machines towards the Digital Triplet Hierarchy," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    7. Xinzhou Wu & Zhe Cheng & Victor E. Kuzmichev, 2023. "Dynamic Fit Optimization and Effect Evaluation of a Female Wetsuit Based on Virtual Technology," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    8. Pengcheng Ni & Zhiyuan Ye & Can Cao & Zhimin Guo & Jian Zhao & Xing He, 2023. "Cooperative Game-Based Collaborative Optimal Regulation-Assisted Digital Twins for Wide-Area Distributed Energy," Energies, MDPI, vol. 16(6), pages 1-17, March.
    9. Zio, Enrico & Miqueles, Leonardo, 2024. "Digital twins in safety analysis, risk assessment and emergency management," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    10. Hongjun Li & Yu Yang & Chi Zhang & Chengjun Zhang & Wei Chen, 2023. "Visualization Monitoring of Industrial Detonator Automatic Assembly Line Based on Digital Twin," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    11. Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
    12. Wang, Jinrui & Zhang, Zongzhen & Liu, Zhiliang & Han, Baokun & Bao, Huaiqian & Ji, Shanshan, 2023. "Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Dapai Shi & Jingyuan Zhao & Chika Eze & Zhenghong Wang & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Artificial Intelligence Framework for Battery Management System," Energies, MDPI, vol. 16(11), pages 1-21, May.
    14. Xueru Zhang & Dennis K. J. Lin & Lin Wang, 2023. "Digital Triplet: A Sequential Methodology for Digital Twin Learning," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    15. Milena Kajba & Borut Jereb & Tina Cvahte Ojsteršek, 2023. "Exploring Digital Twins in the Transport and Energy Fields: A Bibliometrics and Literature Review Approach," Energies, MDPI, vol. 16(9), pages 1-23, May.
    16. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    17. Jaljolie, Ruba & Riekkinen, Kirsikka & Dalyot, Sagi, 2021. "A topological-based approach for determining spatial relationships of complex volumetric parcels in land administration systems," Land Use Policy, Elsevier, vol. 109(C).
    18. Muhammad Ali Musarat & Alishba Sadiq & Wesam Salah Alaloul & Mohamed Mubarak Abdul Wahab, 2022. "A Systematic Review on Enhancement in Quality of Life through Digitalization in the Construction Industry," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    19. Verdouw, Cor & Tekinerdogan, Bedir & Beulens, Adrie & Wolfert, Sjaak, 2021. "Digital twins in smart farming," Agricultural Systems, Elsevier, vol. 189(C).
    20. Chao Ke & Xiuyan Pan & Pan Wan & Zixi Huang & Zhigang Jiang, 2023. "An Intelligent Redesign Method for Used Products Based on Digital Twin," Sustainability, MDPI, vol. 15(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:51-:d:1049937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.