IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i7d10.1007_s10845-022-01973-6.html
   My bibliography  Save this article

Knowledge-embedded machine learning and its applications in smart manufacturing

Author

Listed:
  • Farzam Farbiz

    (Institute of High Performance Computing)

  • Mohd Salahuddin Habibullah

    (Institute of High Performance Computing)

  • Brahim Hamadicharef

    (Institute of High Performance Computing)

  • Tomasz Maszczyk

    (Institute of High Performance Computing)

  • Saurabh Aggarwal

    (Institute of High Performance Computing)

Abstract

Demands for more accurate machine learning models have given rise to rethinking current modeling approaches that were deemed unsuitable, primarily due to their computational complexity and the lack of availability and accessibility to representative data. In Industry 4.0, rapid advancements in Digital Twin (DT) technologies and the pervasiveness of cost-effective sensor technologies have pushed the incorporation of artificial intelligence, particularly data-driven machine learning models, for use in smart manufacturing. However, the persistent issue with such models is their high sensitivity to the training data and the lack of interpretability in the outcomes, at times generating unrealistic results. The incorporation of knowledge into the machine learning pipeline has been earmarked as the most promising approach to address such issues. This paper aims to answer this call through a Knowledge-embedded Machine Learning (KML) framework for smart manufacturing, which embeds knowledge from experience and, or physics information into the machine learning pipeline, thus making the outcomes from these models more representative of real applications. The merits of KML were then presented through comparative studies showing its capability to outperform knowledge-based and data-driven models. This promising outcome led to the development of frameworks that can potentially incorporate KML for smart manufacturing applications such as Prognostics and Health Management (PHM) and DT, further supporting the usefulness of the proposed KML framework.

Suggested Citation

  • Farzam Farbiz & Mohd Salahuddin Habibullah & Brahim Hamadicharef & Tomasz Maszczyk & Saurabh Aggarwal, 2023. "Knowledge-embedded machine learning and its applications in smart manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2889-2906, October.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:7:d:10.1007_s10845-022-01973-6
    DOI: 10.1007/s10845-022-01973-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01973-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01973-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Whitmore & Anurag Agarwal & Li Xu, 2015. "The Internet of Things—A survey of topics and trends," Information Systems Frontiers, Springer, vol. 17(2), pages 261-274, April.
    2. Kwok L. Tsui & Nan Chen & Qiang Zhou & Yizhen Hai & Wenbin Wang, 2015. "Prognostics and Health Management: A Review on Data Driven Approaches," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-17, May.
    3. Fei Tao & Qinglin Qi, 2019. "Make more digital twins," Nature, Nature, vol. 573(7775), pages 490-491, September.
    4. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian-Guo Duan & Tian-Yu Ma & Qing-Lei Zhang & Zhen Liu & Ji-Yun Qin, 2023. "Design and application of digital twin system for the blade-rotor test rig," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 753-769, February.
    2. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    3. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    4. Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.
    5. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    6. Xinzhou Wu & Zhe Cheng & Victor E. Kuzmichev, 2023. "Dynamic Fit Optimization and Effect Evaluation of a Female Wetsuit Based on Virtual Technology," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    7. Ali Rohan, 2022. "Holistic Fault Detection and Diagnosis System in Imbalanced, Scarce, Multi-Domain (ISMD) Data Setting for Component-Level Prognostics and Health Management (PHM)," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    8. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    9. Qinglan Liu & Adriana Hofmann Trevisan & Miying Yang & Janaina Mascarenhas, 2022. "A framework of digital technologies for the circular economy: Digital functions and mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2171-2192, July.
    10. Maximilian Zarte & Agnes Pechmann & Isabel L. Nunes, 2022. "Problems, Needs, and Challenges of a Sustainability-Based Production Planning," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    11. Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    12. Federica Cena & Luca Console & Assunta Matassa & Ilaria Torre, 2019. "Multi-dimensional intelligence in smart physical objects," Information Systems Frontiers, Springer, vol. 21(2), pages 383-404, April.
    13. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    14. Wang, Di & He, Bin & Hu, Zhimu, 2024. "Financial technology and firm productivity: Evidence from Chinese listed enterprises," Finance Research Letters, Elsevier, vol. 63(C).
    15. Oscar Brousse & Charles H. Simpson & Ate Poorthuis & Clare Heaviside, 2024. "Unequal distributions of crowdsourced weather data in England and Wales," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
    17. Payam Hanafizadeh & Ferdos Hatami Lankarani & Shahrokh Nikou, 2022. "Perspectives on management theory’s application in the internet of things research," Information Systems and e-Business Management, Springer, vol. 20(4), pages 749-787, December.
    18. Shang, Juan & Li, Pengfei & Li, Ling & Chen, Yong, 2018. "The relationship between population growth and capital allocation in urbanization," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 249-256.
    19. Dapai Shi & Jingyuan Zhao & Chika Eze & Zhenghong Wang & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Artificial Intelligence Framework for Battery Management System," Energies, MDPI, vol. 16(11), pages 1-21, May.
    20. Xueru Zhang & Dennis K. J. Lin & Lin Wang, 2023. "Digital Triplet: A Sequential Methodology for Digital Twin Learning," Mathematics, MDPI, vol. 11(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:7:d:10.1007_s10845-022-01973-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.