IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14369-d1250753.html
   My bibliography  Save this article

Intelligent-Technology-Empowered Active Emergency Command Strategy for Urban Hazardous Chemical Disaster Management

Author

Listed:
  • Jieyin Lyu

    (School of Information Engineering, Chang’an University, Xi’an 710064, China
    CIMC Intelligent Technology Co., Ltd., Shenzhen 518063, China)

  • Shouqin Zhou

    (CIMC Intelligent Technology Co., Ltd., Shenzhen 518063, China
    School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
    School of Mechanical and Electrical Engineering, Guangdong University of Science & Technology, Dongguan 523083, China)

  • Jingang Liu

    (School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China)

  • Bingchun Jiang

    (School of Mechanical and Electrical Engineering, Guangdong University of Science & Technology, Dongguan 523083, China)

Abstract

Urban safety production is a core component of social safety and is associated with the production, storage and transport of hazardous chemicals, which are potential sources of disaster in an urban area. Chemicals’ locations in a city present a hidden site of danger, which can easily become disaster sites if supervision is inadequate. Aiming to improve the processes and typical scenarios of the production, storage, transportation and use of hazardous chemicals, this paper proposes an intelligent-technology-empowered active emergency command strategy (ITAECS) for urban hazardous chemical disaster management (UHCDM) in smart–safe cities. This paper aims to provide a strategy for active emergency command that takes into account the disaster source; hidden danger site; or disaster site of hazardous chemicals such as natural gas, gasoline and hydrogen energy based on five aspects: intelligent perception technology and equipment, a dynamically perceived IoT system, the accurate deduction of disaster posture, virtual reality emergency rescue rehearsal and an immersive emergency command platform. This research is conducive to the safety, efficiency and greenness of the whole industrial chain, such as the production, storage, transportation, operation and use of hazardous chemicals. There are difficulties and challenges in introducing ITAECS to urban hazardous chemical production safety and emergency management, such as the need for joint promotion of enterprises, industries and governments; uneven technological development; and several scientific–technological issues to be solved, as well as non-uniform standards. Overall, this paper helps improve the emergency management of urban hazardous chemical safety production.

Suggested Citation

  • Jieyin Lyu & Shouqin Zhou & Jingang Liu & Bingchun Jiang, 2023. "Intelligent-Technology-Empowered Active Emergency Command Strategy for Urban Hazardous Chemical Disaster Management," Sustainability, MDPI, vol. 15(19), pages 1-28, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14369-:d:1250753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14369/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14369/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianfeng Lu & Xiaoxia Wang & Jiahong Zhao, 2021. "Optimization of Emergency Supplies Scheduling for Hazardous Chemicals Storage Considering Risk," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    2. B. Zhao, 2016. "Facts and lessons related to the explosion accident in Tianjin Port, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 707-713, October.
    3. Dianyou Yu & Zheng He, 2022. "Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: advances, challenges, and opportunities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 1-36, May.
    4. Ehab Shahat & Chang T. Hyun & Chunho Yeom, 2021. "City Digital Twin Potentials: A Review and Research Agenda," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    5. Xiaoliang Xie & Yuzhang Tian & Guo Wei, 2023. "Deduction of sudden rainstorm scenarios: integrating decision makers' emotions, dynamic Bayesian network and DS evidence theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2935-2955, April.
    6. Feiyue Wang & Ziling Xie & Zhongwei Pei & Dingli Liu, 2022. "Emergency Relief Chain for Natural Disaster Response Based on Government-Enterprise Coordination," IJERPH, MDPI, vol. 19(18), pages 1-22, September.
    7. Abrahamsen, Eirik Bjorheim & Abrahamsen, Håkon Bjorheim & Milazzo, Maria Francesca & Selvik, Jon Tømmerås, 2018. "Using the ALARP principle for safety management in the energy production sector of chemical industry," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 160-165.
    8. Tan Yigitcanlar & Rashid Mehmood & Juan M. Corchado, 2021. "Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    9. Sheikh Kamran Abid & Noralfishah Sulaiman & Shiau Wei Chan & Umber Nazir & Muhammad Abid & Heesup Han & Antonio Ariza-Montes & Alejandro Vega-Muñoz, 2021. "Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    10. Ning Li & Na Sun & Chunxia Cao & Shike Hou & Yanhua Gong, 2022. "Review on visualization technology in simulation training system for major natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1851-1882, July.
    11. Fei Tao & Qinglin Qi, 2019. "Make more digital twins," Nature, Nature, vol. 573(7775), pages 490-491, September.
    12. Waleed Ejaz & Muhammad Awais Azam & Salman Saadat & Farkhund Iqbal & Abdul Hanan, 2019. "Unmanned Aerial Vehicles enabled IoT Platform for Disaster Management," Energies, MDPI, vol. 12(14), pages 1-18, July.
    13. Byungtae Yoo & Sang D. Choi, 2019. "Emergency Evacuation Plan for Hazardous Chemicals Leakage Accidents Using GIS-based Risk Analysis Techniques in South Korea," IJERPH, MDPI, vol. 16(11), pages 1-14, June.
    14. Chirine Khalil NASSAR & Corina-Cristiana NASTACÄ‚, 2021. "The Beirut port explosion: social, urban and economic impact," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 16(3), pages 42-52, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milena Kajba & Borut Jereb & Tina Cvahte Ojsteršek, 2023. "Exploring Digital Twins in the Transport and Energy Fields: A Bibliometrics and Literature Review Approach," Energies, MDPI, vol. 16(9), pages 1-23, May.
    2. Dianyou Yu & Zheng He, 2022. "Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: advances, challenges, and opportunities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 1-36, May.
    3. M. R. Mahendrini Fernando Ariyachandra & Gayan Wedawatta, 2023. "Digital Twin Smart Cities for Disaster Risk Management: A Review of Evolving Concepts," Sustainability, MDPI, vol. 15(15), pages 1-25, August.
    4. Jian-Guo Duan & Tian-Yu Ma & Qing-Lei Zhang & Zhen Liu & Ji-Yun Qin, 2023. "Design and application of digital twin system for the blade-rotor test rig," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 753-769, February.
    5. Claire Daniel & Christopher Pettit, 2022. "Charting the past and possible futures of planning support systems: Results of a citation network analysis," Environment and Planning B, , vol. 49(7), pages 1875-1892, September.
    6. Xinzhou Wu & Zhe Cheng & Victor E. Kuzmichev, 2023. "Dynamic Fit Optimization and Effect Evaluation of a Female Wetsuit Based on Virtual Technology," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    7. Yadi Zhao & Lei Yan & Jian Wu & Ximing Song, 2023. "Design and Implementation of a Digital Twin System for Log Rotary Cutting Optimization," Future Internet, MDPI, vol. 16(1), pages 1-14, December.
    8. Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), 2017. "Digitalization in Supply Chain Management and Logistics: Smart and Digital Solutions for an Industry 4.0 Environment," Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management, volume 23, number 23.
    9. Zio, Enrico & Miqueles, Leonardo, 2024. "Digital twins in safety analysis, risk assessment and emergency management," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    10. Kaigong Zhao & Xiaolei Zhang & Hui Wang & Yongling Gai & Haiyan Wang, 2022. "Allocation of Resources for Emergency Response to Coal-to-Oil Hazardous Chemical Accidents under Railway Transportation Mode," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    11. Hossein Omrany & Karam M. Al-Obaidi & Amreen Husain & Amirhosein Ghaffarianhoseini, 2023. "Digital Twins in the Construction Industry: A Comprehensive Review of Current Implementations, Enabling Technologies, and Future Directions," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    12. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Vittorio Astarita & Giuseppe Guido & Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas, 2024. "Risk Reduction in Transportation Systems: The Role of Digital Twins According to a Bibliometric-Based Literature Review," Sustainability, MDPI, vol. 16(8), pages 1-26, April.
    14. Hongjun Li & Yu Yang & Chi Zhang & Chengjun Zhang & Wei Chen, 2023. "Visualization Monitoring of Industrial Detonator Automatic Assembly Line Based on Digital Twin," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    15. Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
    16. Shipeng Yang & Wanxiang Xu & Yuxuan Xie & Muhammad Tayyab Sohail & Yefang Gong, 2023. "Impact of Natural Hazards on Agricultural Production Decision Making of Peasant Households: On the Basis of the Micro Survey Data of Hunan Province," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    17. Joel Manifold & Suresh Renukappa & Subashini Suresh & Panagiotis Georgakis & Gamage Rashini Perera, 2024. "Dual Transition of Net Zero Carbon and Digital Transformation: Case Study of UK Transportation Sector," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    18. Dapai Shi & Jingyuan Zhao & Chika Eze & Zhenghong Wang & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Artificial Intelligence Framework for Battery Management System," Energies, MDPI, vol. 16(11), pages 1-21, May.
    19. Xueru Zhang & Dennis K. J. Lin & Lin Wang, 2023. "Digital Triplet: A Sequential Methodology for Digital Twin Learning," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    20. Helen Onyeaka & Phemelo Tamasiga & Uju Mary Nwauzoma & Taghi Miri & Uche Chioma Juliet & Ogueri Nwaiwu & Adenike A. Akinsemolu, 2023. "Using Artificial Intelligence to Tackle Food Waste and Enhance the Circular Economy: Maximising Resource Efficiency and Minimising Environmental Impact: A Review," Sustainability, MDPI, vol. 15(13), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14369-:d:1250753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.