IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2047-d1532650.html
   My bibliography  Save this article

A Case Study of a Macro-Landslide in the High Mountain Areas of the Ecuadorian Andes: “La Cría” at the Azuay Province (Ecuador)

Author

Listed:
  • Francisco Javier Torrijo

    (Department of Geotechnical Engineering, Research Centre for Architecture, Heritage and Management for Sustainable Development (PEGASO), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Santiago Álvarez

    (Secretaría Nacional de Gestión de Riesgos CZ6, Simón Bolívar, Cuenca 010111, Ecuador)

  • Julio Garzón-Roca

    (Department of Geodynamics, Stratigraphy and Paleontology, Faculty of Geology, Complutense University of Madrid, 28040 Madrid, Spain)

Abstract

Large landslides, known as macro-landslides, pose a significant threat to the safety and stability of communities living in mountainous areas. In this work, an evaluation of a macro-landslide that occurred in the La Cría community (Azuay province, Ecuador) is conducted. This macro-landslide covered an extensive area of approximately 443 hectares and affected a population that is mainly dedicated to agriculture. Historically, a landslide was already identified in the area in the 1973 geological map. However, there has recently been a significant increase in the speed of the landslide, causing damage to infrastructure and homes, and directly affecting 97 homes of various structural typologies. The study area is characterised by its geological instability, influenced by the presence of reservoirs for agriculture. In addition, the community of La Cría within the landslide has experienced considerable population growth. The study conducted combines the use of a landslide susceptibility map with a multicriteria analysis (which considers the interactions of geological, hydrological and land use) and a stability evaluation based on limit equilibrium methods. The results show that most of the territory assessed, approximately 55%, presents with a very high susceptibility to landslides, and reveal that the geology and the interactions between local geology and water resource management are needed to prevent and mitigate the risks associated with mass movements in the area.

Suggested Citation

  • Francisco Javier Torrijo & Santiago Álvarez & Julio Garzón-Roca, 2024. "A Case Study of a Macro-Landslide in the High Mountain Areas of the Ecuadorian Andes: “La Cría” at the Azuay Province (Ecuador)," Land, MDPI, vol. 13(12), pages 1-23, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2047-:d:1532650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Carrara & F. Guzzetti & M. Cardinali & P. Reichenbach, 1999. "Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 117-135, November.
    2. Fabio Luino & Fabrizio Terenzio Gizzi & Walter Palmieri & Sabina Porfido & Laura Turconi, 2023. "Historical Memory as an Effective and Useful Tool for Proper Land Use Planning: Lessons Learnt from Some Italian Cases," Land, MDPI, vol. 12(9), pages 1-39, September.
    3. Fabio Luino & Mariano Barriendos & Fabrizio Terenzio Gizzi & Ruediger Glaser & Christoph Gruetzner & Walter Palmieri & Sabina Porfido & Heather Sangster & Laura Turconi, 2023. "Historical Data for Natural Hazard Risk Mitigation and Land Use Planning," Land, MDPI, vol. 12(9), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Turconi & Barbara Bono & Rebecca Genta & Fabio Luino, 2024. "The Effects of Flood Damage on Urban Road Networks in Italy: The Critical Function of Underpasses," Land, MDPI, vol. 13(9), pages 1-30, September.
    2. Fabrizio Terenzio Gizzi & Vittorio Bovolin & Paolo Villani & Maria Rosaria Potenza & Simona Voria & Antonio Minervino Amodio, 2024. "Rewinding the Tape: Documentary Heritage to (Re)discover “Lost” Natural Hazards—Evidence and Inferences from Southern Italy," Sustainability, MDPI, vol. 16(7), pages 1-39, March.
    3. Jorge A. Salinas-Jasso & Juan C. Montalvo-Arrieta & José R. Chapa-Guerrero, 2020. "A dynamic stability analysis for the Olinalá landslide, northeastern Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1225-1248, July.
    4. Ali Yalcin & Fikri Bulut, 2007. "Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 201-226, April.
    5. Serwan M. J. Baban & Deborah Thomas & Francis Canisius & Kamal J. Sant, 2008. "Managing development in the hillsides of Trinidad and Tobago using geoinformatics," Sustainable Development, John Wiley & Sons, Ltd., vol. 16(5), pages 314-328.
    6. Marko Sinčić & Sanja Bernat Gazibara & Martin Krkač & Hrvoje Lukačić & Snježana Mihalić Arbanas, 2022. "The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments," Land, MDPI, vol. 11(8), pages 1-37, August.
    7. V. Che & M. Kervyn & G. Ernst & P. Trefois & S. Ayonghe & P. Jacobs & E. Ranst & C. Suh, 2011. "Systematic documentation of landslide events in Limbe area (Mt Cameroon Volcano, SW Cameroon): geometry, controlling, and triggering factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 47-74, October.
    8. Rabin Chakrabortty & Subodh Chandra Pal & Mehebub Sahana & Ayan Mondal & Jie Dou & Binh Thai Pham & Ali P. Yunus, 2020. "Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1259-1294, November.
    9. Guorui Gao & Futao Wang & Zhenqing Wang & Qing Zhao & Litao Wang & Jinfeng Zhu & Wenliang Liu & Gang Qin & Yanfang Hou, 2024. "Multi-Scale Earthquake Damaged Building Feature Set," Data, MDPI, vol. 9(7), pages 1-19, June.
    10. Mehrnoosh Jadda & Helmi Shafri & Shattri Mansor, 2011. "PFR model and GiT for landslide susceptibility mapping: a case study from Central Alborz, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 395-412, May.
    11. Wang Wensheng & Li Yueqing, 2012. "Hazard degree assessment of landslide using set pair analysis method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 367-379, January.
    12. Wei Wang & Chuanyin Zhang & Minzhang Hu & Qiang Yang & Shiming Liang & Shengjun Kang, 2019. "Monitoring and analysis of geological hazards in Three Gorges area based on load impact change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 611-622, June.
    13. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    14. Frederico F. Ávila & Regina C. Alvalá & Rodolfo M. Mendes & Diogo J. Amore, 2021. "The influence of land use/land cover variability and rainfall intensity in triggering landslides: a back-analysis study via physically based models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 1139-1161, January.
    15. Paolo Tarolli & Giulia Sofia & Giancarlo Dalla Fontana, 2012. "Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 65-83, March.
    16. Zhi-hua Yang & Heng-xing Lan & Xing Gao & Lang-ping Li & Yun-shan Meng & Yu-ming Wu, 2015. "Urgent landslide susceptibility assessment in the 2013 Lushan earthquake-impacted area, Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2467-2487, February.
    17. Malcolm Anderson & Liz Holcombe & Rob Flory & Jean-Philippe Renaud, 2008. "Implementing low-cost landslide risk reduction: a pilot study in unplanned housing areas of the Caribbean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 297-315, December.
    18. Gerardo Grelle & Antonietta Rossi & Paola Revellino & Luigi Guerriero & Francesco Maria Guadagno & Giuseppe Sappa, 2019. "Assessment of Debris-Flow Erosion and Deposit Areas by Morphometric Analysis and a GIS-Based Simplified Procedure: A Case Study of Paupisi in the Southern Apennines," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    19. Jaydip Dey & Saurabh Sakhre & Ritesh Vijay & Hemant Bherwani & Rakesh Kumar, 2021. "Geospatial assessment of urban sprawl and landslide susceptibility around the Nainital lake, Uttarakhand, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3543-3561, March.
    20. Mowen Xie & Tetsuro Esaki & Guoyun Zhou, 2004. "GIS-Based Probabilistic Mapping of Landslide Hazard Using a Three-Dimensional Deterministic Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 265-282, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2047-:d:1532650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.