IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4134-d1148678.html
   My bibliography  Save this article

Influence of Atmospheric Stability on Wind Turbine Energy Production: A Case Study of the Coastal Region of Yucatan

Author

Listed:
  • Christy Pérez

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán A.C. (CICY), Merida 97205, Yucatan, Mexico)

  • Michel Rivero

    (Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Michoacan, Mexico)

  • Mauricio Escalante

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Merida 97203, Yucatan, Mexico)

  • Victor Ramirez

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán A.C. (CICY), Merida 97205, Yucatan, Mexico)

  • Damien Guilbert

    (Group of Research in Electrical Enginnering of Nancy (GREEN), Université de Lorraine, F-54000 Nancy, France)

Abstract

Wind energy production mainly depends on atmospheric conditions. The atmospheric stability can be described through different parameters, such as wind shear, turbulence intensity, bulk Richardson number, and the Monin–Obukhov length. Although they are frequently used in micrometeorology and the wind industry, there is no standard comparison method. This study describes the atmospheric stability of a coastal region of Yucatan, Mexico, using these four parameters. They are calculated using six-month data from a meteorological mast and a marine buoy to determine atmospheric stability conditions and compare their results. The unstable atmospheric condition was predominant at the site, with an 80% occurrence during the measurement period, followed by 12% in neutral and 6% in stable conditions. Wind speed estimations were performed for each atmospheric stability scenario, and the variation in the energy produced was derived for each case. Unstable atmospheric conditions deliver up to 8% more power than stable conditions, while neutral conditions deliver up to 9% more energy than stable conditions. Therefore, considering a neutral state may lead to a considerably biased energy production estimation. Finally, an example calculation indicates that atmospheric stability is a crucial parameter in estimating wind energy production more accurately.

Suggested Citation

  • Christy Pérez & Michel Rivero & Mauricio Escalante & Victor Ramirez & Damien Guilbert, 2023. "Influence of Atmospheric Stability on Wind Turbine Energy Production: A Case Study of the Coastal Region of Yucatan," Energies, MDPI, vol. 16(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4134-:d:1148678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Guorui & Liu, Jinfu & Wan, Jie & Li, Fei & Guo, Yufeng & Yu, Daren, 2018. "The analysis of turbulence intensity based on wind speed data in onshore wind farms," Renewable Energy, Elsevier, vol. 123(C), pages 756-766.
    2. Soler-Bientz, Rolando, 2011. "Preliminary results from a network of stations for wind resource assessment at North of Yucatan Peninsula," Energy, Elsevier, vol. 36(1), pages 538-548.
    3. Gualtieri, Giovanni, 2016. "Atmospheric stability varying wind shear coefficients to improve wind resource extrapolation: A temporal analysis," Renewable Energy, Elsevier, vol. 87(P1), pages 376-390.
    4. Kim, Dae-Young & Kim, Yeon-Hee & Kim, Bum-Suk, 2021. "Changes in wind turbine power characteristics and annual energy production due to atmospheric stability, turbulence intensity, and wind shear," Energy, Elsevier, vol. 214(C).
    5. Gualtieri, Giovanni & Secci, Sauro, 2011. "Comparing methods to calculate atmospheric stability-dependent wind speed profiles: A case study on coastal location," Renewable Energy, Elsevier, vol. 36(8), pages 2189-2204.
    6. Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
    7. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
    8. Han, Xingxing & Liu, Deyou & Xu, Chang & Shen, Wen Zhong, 2018. "Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain," Renewable Energy, Elsevier, vol. 126(C), pages 640-651.
    9. Kim, Dae-Young & Kim, Bum-Suk, 2022. "Differences in wind farm energy production based on the atmospheric stability dissipation rate: Case study of a 30 MW onshore wind farm," Energy, Elsevier, vol. 239(PE).
    10. Lim, Hee-Chang, 2012. "Atmospheric stability of surface boundary layer in coastal region of the Wol–Ryong site," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3875-3884.
    11. Jennifer F. Newman & Petra M. Klein, 2014. "The Impacts of Atmospheric Stability on the Accuracy of Wind Speed Extrapolation Methods," Resources, MDPI, vol. 3(1), pages 1-25, January.
    12. Kumer, Valerie-M. & Reuder, Joachim & Dorninger, Manfred & Zauner, Rudolf & Grubišić, Vanda, 2016. "Turbulent kinetic energy estimates from profiling wind LiDAR measurements and their potential for wind energy applications," Renewable Energy, Elsevier, vol. 99(C), pages 898-910.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Chakib Sekkal & Zakarya Ziani & Moustafa Yassine Mahdad & Sidi Mohammed Meliani & Mohammed Haris Baghli & Mohammed Zakaria Bessenouci, 2024. "Assessing the Wind Power Potential in Naama, Algeria to Complement Solar Energy through Integrated Modeling of the Wind Resource and Turbine Wind Performance," Energies, MDPI, vol. 17(4), pages 1-34, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    4. Crippa, Paola & Alifa, Mariana & Bolster, Diogo & Genton, Marc G. & Castruccio, Stefano, 2021. "A temporal model for vertical extrapolation of wind speed and wind energy assessment," Applied Energy, Elsevier, vol. 301(C).
    5. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
    6. Geon Hwa Ryu & Young-Gon Kim & Sung Jo Kwak & Man Soo Choi & Moon-Seon Jeong & Chae-Joo Moon, 2022. "Atmospheric Stability Effects on Offshore and Coastal Wind Resource Characteristics in South Korea for Developing Offshore Wind Farms," Energies, MDPI, vol. 15(4), pages 1-23, February.
    7. Feng, Dachuan & Li, Larry K.B. & Gupta, Vikrant & Wan, Minping, 2022. "Componentwise influence of upstream turbulence on the far-wake dynamics of wind turbines," Renewable Energy, Elsevier, vol. 200(C), pages 1081-1091.
    8. Liao, Ding & Zhu, Shun-Peng & Correia, José A.F.O. & De Jesus, Abílio M.P. & Veljkovic, Milan & Berto, Filippo, 2022. "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects," Renewable Energy, Elsevier, vol. 200(C), pages 724-742.
    9. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
    10. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    11. Cheynet, Etienne & Li, Lin & Jiang, Zhiyu, 2024. "Metocean conditions at two Norwegian sites for development of offshore wind farms," Renewable Energy, Elsevier, vol. 224(C).
    12. Bilal, Boudy & Adjallah, Kondo Hloindo & Yetilmezsoy, Kaan & Bahramian, Majid & Kıyan, Emel, 2021. "Determination of wind potential characteristics and techno-economic feasibility analysis of wind turbines for Northwest Africa," Energy, Elsevier, vol. 218(C).
    13. Li, Jiale & Wang, Xuefei & Yu, Xiong (Bill), 2018. "Use of spatio-temporal calibrated wind shear model to improve accuracy of wind resource assessment," Applied Energy, Elsevier, vol. 213(C), pages 469-485.
    14. Yang, Xinrong & Jiang, Xin & Liang, Shijing & Qin, Yingzuo & Ye, Fan & Ye, Bin & Xu, Jiayu & He, Xinyue & Wu, Jie & Dong, Tianyun & Cai, Xitian & Xu, Rongrong & Zeng, Zhenzhong, 2024. "Spatiotemporal variation of power law exponent on the use of wind energy," Applied Energy, Elsevier, vol. 356(C).
    15. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    16. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    17. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
    18. Arkaitz Rabanal & Alain Ulazia & Gabriel Ibarra-Berastegi & Jon Sáenz & Unai Elosegui, 2018. "MIDAS: A Benchmarking Multi-Criteria Method for the Identification of Defective Anemometers in Wind Farms," Energies, MDPI, vol. 12(1), pages 1-19, December.
    19. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    20. Yaqing Jin & Huiwen Liu & Rajan Aggarwal & Arvind Singh & Leonardo P. Chamorro, 2016. "Effects of Freestream Turbulence in a Model Wind Turbine Wake," Energies, MDPI, vol. 9(10), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4134-:d:1148678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.