IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7387-d1465313.html
   My bibliography  Save this article

Research on Energy Saving Effect of Parallel and Perpendicular Yard Layouts under Different Proportions of Transshipment at the Automated Container Terminal

Author

Listed:
  • Xiaojun Li

    (Policy Research Center, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
    School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026, China)

  • Ran Zhou

    (Policy Research Center, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China)

  • Lequn Zhu

    (Policy Research Center, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China)

Abstract

The proportions of container transshipment is the key factor in determining the proportion of automated guided vehicle (AGV) and external container truck operations. In terms of parallel and perpendicular layouts of automated container terminals (ACTs), varying proportions of container transshipment result in different proportions of AGVs and external container truck operations, subsequently leading to distinct impacts on energy consumption (EC) for each ACT layout. This paper deemed EC as the primary evaluation criterion, established an EC model encompassing yard cranes (YCs) and container trucks, and investigated the EC of parallel and perpendicular layouts at different proportions of container transshipment. The results indicate that when the proportions of container transshipment were less than 17%, the parallel layout had lower EC; when it was between 17% and 21%, there was not much difference between the two layouts; when it was greater than 21%, the perpendicular layout had lower EC. This conclusion was based on an ideal environment established in this paper. When making decisions, decision makers should use this model as a starting point and adapt it flexibly to the actual situation of the port, in order to arrive at a reasonable and feasible plan.

Suggested Citation

  • Xiaojun Li & Ran Zhou & Lequn Zhu, 2024. "Research on Energy Saving Effect of Parallel and Perpendicular Yard Layouts under Different Proportions of Transshipment at the Automated Container Terminal," Sustainability, MDPI, vol. 16(17), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7387-:d:1465313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin, Jian Gang & Meng, Qiang & Wang, Hai, 2021. "Feeder vessel routing and transshipment coordination at a congested hub port," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 1-21.
    2. Ping Wang & Joan P. Mileski & Qingcheng Zeng, 2020. "Correction to: Alignments between strategic content and process structure: the case of container terminal service process automation," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 720-720, December.
    3. Nishimura, Etsuko & Imai, Akio & Janssens, Gerrit K. & Papadimitriou, Stratos, 2009. "Container storage and transshipment marine terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 771-786, September.
    4. Chen, Shukai & Wang, Hua & Meng, Qiang, 2021. "Autonomous truck scheduling for container transshipment between two seaport terminals considering platooning and speed optimization," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 289-315.
    5. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    6. Geraldine Knatz & Theo Notteboom & Athanasios A. Pallis, 2022. "Container terminal automation: revealing distinctive terminal characteristics and operating parameters," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 537-565, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Di & Chen, Feng & Mei, Ziqiao, 2023. "Optimization on joint scheduling of yard allocation and transfer manpower assignment for automobile RO-RO terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    2. Roy, Debjit & van Ommeren, Jan-Kees & de Koster, René & Gharehgozli, Amir, 2022. "Modeling landside container terminal queues: Exact analysis and approximations," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 73-102.
    3. Lu, Ying & Fang, Sidun & Niu, Tao & Liao, Ruijin, 2023. "Energy-transport scheduling for green vehicles in seaport areas: A review on operation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Nellen, Nicole & Lange, Ann-Kathrin & Jahn, Carlos, 2022. "Potentials of direct container transshipment at container terminals," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 679-705, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    5. Bouchery, Yann & Hezarkhani, Behzad & Stauffer, Gautier, 2022. "Coalition formation and cost sharing for truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 15-34.
    6. Zhen, Lu, 2016. "Modeling of yard congestion and optimization of yard template in container ports," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 83-104.
    7. Barua, Limon & Zou, Bo & Choobchian, Pooria, 2023. "Maximizing truck platooning participation with preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    8. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    9. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    10. Zhongbin Zhao & Xifu Wang & Suxin Cheng & Wei Liu & Lijun Jiang, 2022. "A New Synchronous Handling Technology of Double Stack Container Trains in Sea-Rail Intermodal Terminals," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    11. Turi Attila & Boglut Geanina-Ioana, 2024. "Intermodal Transportation Challenges in Eastern Europe: Case Study of Romania," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 2018-2031.
    12. Gu, Bingmei & Liu, Jiaguo & Ye, Xiaoheng & Gong, Yu & Chen, Jihong, 2024. "Data-driven approach for port resilience evaluation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    13. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    14. Voß, Andre & Guckenbiehl, Gabriel & Schütt, Holger & Buer, Tobias, 2016. "A storage strategy with dynamic bay reservations for container terminals," Bremen Computational Logistics Group Working Papers 4, University of Bremen, Computational Logistics Junior Research Group.
    15. Claudia Durán & Ivan Derpich & Raúl Carrasco, 2022. "Optimization of Port Layout to Determine Greenhouse Gas Emission Gaps," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    16. Dawn Russell & Kusumal Ruamsook & Violeta Roso, 2022. "Managing supply chain uncertainty by building flexibility in container port capacity: a logistics triad perspective and the COVID-19 case," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(1), pages 92-113, March.
    17. Yan, Xiaoyuan & Xu, Min & Xie, Chi, 2023. "Local container drayage problem with improved truck platooning operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    18. Xiaoju Zhang & Yue Gu & Yuqing Yang & Baoli Liu, 2023. "Comparing the Efficiency of Two Types of Yard Layout in Container Terminals," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    19. Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2019. "Planning an Intermodal Terminal for the Sustainable Transport Networks," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    20. Chen, Rui & Jia, Shuai & Meng, Qiang, 2023. "Dynamic container drayage booking and routing decision support approach for E-commerce platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7387-:d:1465313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.