IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v188y2024ics0191261524001668.html
   My bibliography  Save this article

Alternative service network design for bus systems responding to time-varying road disruptions

Author

Listed:
  • Zheng, Hankun
  • Sun, Huijun
  • Wu, Jianjun
  • Kang, Liujiang

Abstract

In practice, road disruptions occur frequently, interrupting multiple bus routes at the same time and causing widespread passenger delays. Typically, these disrupted roads are repaired sequentially and then gradually put into service. In response to such time-varying road disruptions, this paper aims to assist bus operators in developing effective alternative service networks for passengers. The proposed approach involves the joint optimization of service-based route adjustments, bus timetables, and passenger assignment to minimize the total passenger cost and weighted bus operation time. Specifically, a novel service-based adjustment strategy is introduced to flexibly adapt each bus service to time-varying road disruptions. An integer programming model is built for the studied problem based on the set of passengers’ time-space itineraries. To efficiently generate these time-space itineraries and solve models for large-scale problems, this paper develops a hierarchical solution framework. The framework consists of three key parts: (1) a column generation procedure to iteratively explore passengers’ spatial paths; (2) a customized extension algorithm to extend these spatial paths to time-space itineraries; and (3) a tailored adaptive large neighbourhood search heuristic to solve the final itinerary-based model. After that, the overall methodology is tested with both an illustrative example and a real-world example in Beijing. Experimental results show that our methodology produces a high-performance solution with only 7.3% of unserved passengers. Besides, compared to the two benchmark adjustment strategies, our service-based adjustment strategy reduces the average itinerary cost for all passengers by 27.0% and 43.3%, respectively.

Suggested Citation

  • Zheng, Hankun & Sun, Huijun & Wu, Jianjun & Kang, Liujiang, 2024. "Alternative service network design for bus systems responding to time-varying road disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:transb:v:188:y:2024:i:c:s0191261524001668
    DOI: 10.1016/j.trb.2024.103042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Jinpeng & Wu, Jianjun & Qu, Yunchao & Yin, Haodong & Qu, Xiaobo & Gao, Ziyou, 2019. "Robust bus bridging service design under rail transit system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 97-116.
    2. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    3. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    4. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    5. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    6. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2021. "Service operation design in a transit network with congested common lines," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 81-102.
    7. Jin, Jian Gang & Meng, Qiang & Wang, Hai, 2021. "Feeder vessel routing and transshipment coordination at a congested hub port," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 1-21.
    8. Yuqiang Wang & Pan Shang & Alexander Paz, 2022. "Shuttle Bus Rerouting and Rescheduling Problem considering Daily Demand Fluctuation," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-19, October.
    9. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    10. Shuyang Zhang & Hong K. Lo & Ka Fai Ng & Guojun Chen, 2021. "Metro system disruption management and substitute bus service: a systematic review and future directions," Transport Reviews, Taylor & Francis Journals, vol. 41(2), pages 230-251, March.
    11. Asadi Bagloee, Saeed & Ceder, Avishai (Avi), 2011. "Transit-network design methodology for actual-size road networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1787-1804.
    12. Cervantes-Sanmiguel, K.I. & Chavez-Hernandez, M.V. & Ibarra-Rojas, O.J., 2023. "Analyzing the trade-off between minimizing travel times and reducing monetary costs for users in the transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 142-161.
    13. Christina Iliopoulou & Konstantinos Kepaptsoglou & Eleni Vlahogianni, 2019. "Metaheuristics for the transit route network design problem: a review and comparative analysis," Public Transport, Springer, vol. 11(3), pages 487-521, October.
    14. Cancela, Héctor & Mauttone, Antonio & Urquhart, María E., 2015. "Mathematical programming formulations for transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 17-37.
    15. Chen, Shukai & Wang, Hua & Meng, Qiang, 2021. "Autonomous truck scheduling for container transshipment between two seaport terminals considering platooning and speed optimization," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 289-315.
    16. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    17. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    18. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    19. Szeto, W.Y. & Wu, Yongzhong, 2011. "A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong," European Journal of Operational Research, Elsevier, vol. 209(2), pages 141-155, March.
    20. Jin, Jian Gang & Tang, Loon Ching & Sun, Lijun & Lee, Der-Horng, 2014. "Enhancing metro network resilience via localized integration with bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 17-30.
    21. Si-Jia Zhang & Shun-Ping Jia & Yun Bai & Bao-Hua Mao & Cun-Rui Ma & Tong Zhang, 2018. "Optimal Adjustment Schemes on the Long Through-Type Bus Lines considering the Urban Rail Transit Network," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-15, September.
    22. Evelien van der Hurk & Haris N. Koutsopoulos & Nigel Wilson & Leo G. Kroon & Gábor Maróti, 2016. "Shuttle Planning for Link Closures in Urban Public Transport Networks," Transportation Science, INFORMS, vol. 50(3), pages 947-965, August.
    23. Zheng, Shuai & Liu, Yugang & Lin, Yexin & Wang, Qiang & Yang, Hongtai & Chen, Bin, 2022. "Bridging strategy for the disruption of metro considering the reliability of transportation system: Metro and conventional bus network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    24. Jian Gang Jin & Kwong Meng Teo & Amedeo R. Odoni, 2016. "Optimizing Bus Bridging Services in Response to Disruptions of Urban Transit Rail Networks," Transportation Science, INFORMS, vol. 50(3), pages 790-804, August.
    25. Chen, Jingxu & Liu, Zhiyuan & Wang, Shuaian & Chen, Xuewu, 2018. "Continuum approximation modeling of transit network design considering local route service and short-turn strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 165-188.
    26. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    27. Chen, Yao & An, Kun, 2021. "Integrated optimization of bus bridging routes and timetables for rail disruptions," European Journal of Operational Research, Elsevier, vol. 295(2), pages 484-498.
    28. Huang, Lei & Xiao, Fan & Zhou, Jing & Duan, Zhenya & Zhang, Hua & Liang, Zhe, 2023. "A machine learning based column-and-row generation approach for integrated air cargo recovery problem," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Zhu, Yiyang & Jin, Jian Gang & Wang, Hai, 2024. "Path-choice-constrained bus bridging design under urban rail transit disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    3. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    4. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    5. Abdulkerim Benli & İbrahim Akgün, 2023. "A Multi-Objective Mathematical Programming Model for Transit Network Design and Frequency Setting Problem," Mathematics, MDPI, vol. 11(21), pages 1-23, October.
    6. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    7. Chen, Yao & An, Kun, 2021. "Integrated optimization of bus bridging routes and timetables for rail disruptions," European Journal of Operational Research, Elsevier, vol. 295(2), pages 484-498.
    8. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    9. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    10. Duran-Micco, Javier & Vermeir, Evert & Vansteenwegen, Pieter, 2020. "Considering emissions in the transit network design and frequency setting problem with a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 282(2), pages 580-592.
    11. Nayan, Ashish & Wang, David Z.W., 2017. "Optimal bus transit route packaging in a privatized contracting regime," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 146-157.
    12. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    13. Yiduo Huang & Zuojun Max Shen, 2021. "Optimizing timetable and network reopen plans for public transportation networks during a COVID19-like pandemic," Papers 2109.03940, arXiv.org.
    14. Sunhyung Yoo & Jinwoo Brian Lee & Hoon Han, 2023. "A Reinforcement Learning approach for bus network design and frequency setting optimisation," Public Transport, Springer, vol. 15(2), pages 503-534, June.
    15. Philipp Heyken Soares, 2021. "Zone-based public transport route optimisation in an urban network," Public Transport, Springer, vol. 13(1), pages 197-231, March.
    16. Zhang, Ping & Sun, Huijun & Qu, Yunchao & Yin, Haodong & Jin, Jian Gang & Wu, Jianjun, 2021. "Model and algorithm of coordinated flow controlling with station-based constraints in a metro system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    17. Wang, Hui & Li, Feng & Jia, Bin & Gao, Ziyou & Liu, Jialin & Zhang, Hongliang & Song, Dongdong, 2024. "Enhancing the evacuation efficiency through the two-step optimization of train timetable and response vehicles during metro disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    18. Christina Iliopoulou & Konstantinos Kepaptsoglou & Eleni Vlahogianni, 2019. "Metaheuristics for the transit route network design problem: a review and comparative analysis," Public Transport, Springer, vol. 11(3), pages 487-521, October.
    19. Arbex, Renato Oliveira & da Cunha, Claudio Barbieri, 2015. "Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 355-376.
    20. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:188:y:2024:i:c:s0191261524001668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.