IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6490-d1445522.html
   My bibliography  Save this article

Balancing Submarine Landslides and the Marine Economy for Sustainable Development: A Review and Future Prospects

Author

Listed:
  • Zuer Li

    (School of Marxism, Fujian Normal University, Fuzhou 350108, China)

  • Qihang Li

    (State Key Laboratory of Coal Mine Disasters Dynamics and Control, Chongqing University, Chongqing 400044, China)

Abstract

To proactively respond to the national fourteenth Five-Year Plan policy, we will adhere to a comprehensive land and sea planning approach, working together to promote marine ecological protection, optimize geological space, and integrate the marine economy. This paper provides a comprehensive review of the sustainable development of marine geological hazards (MGHs), with a particular focus on submarine landslides, the marine environment, as well as the marine economy. First, the novelty of this study lies in its review and summary of the temporal and spatial distribution, systematic classification, inducible factors, and realistic characteristics of submarine landslides to enrich the theoretical concept. Moreover, the costs, risks, and impacts on the marine environment and economy of submarine engineering activities such as oil and gas fields, as well as metal ores, were systematically discussed. Combined with the current marine policy, an analysis was conducted on the environmental pollution and economic losses caused by submarine landslides. Herein, the key finding is that China and Mexico are viable candidates for the future large-scale offshore exploitation of oil, gas, nickel, cobalt, cuprum, manganese, and other mineral resources. Compared to land-based mining, deep-sea mining offers superior economic and environmental advantages. Finally, it is suggested that physical model tests and numerical simulation techniques are effective means for investigating the triggering mechanism of submarine landslides, their evolutionary movement process, and the impact on the submarine infrastructure. In the future, the establishment of a multi-level and multi-dimensional monitoring chain for submarine landslide disasters, as well as joint risk assessment, prediction, and early warning systems, can effectively mitigate the occurrence of submarine landslide disasters and promote the sustainable development of the marine environment and economy.

Suggested Citation

  • Zuer Li & Qihang Li, 2024. "Balancing Submarine Landslides and the Marine Economy for Sustainable Development: A Review and Future Prospects," Sustainability, MDPI, vol. 16(15), pages 1-26, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6490-:d:1445522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Yang & Lili Ren & Mingxuan Wu & Hailong Wang & Fengfei Song & L. Ruby Leung & Xin Hao & Jiandong Li & Lei Chen & Huimin Li & Liangying Zeng & Yang Zhou & Pinya Wang & Hong Liao & Jing Wang & Zhen, 2022. "Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Zhong, Jin-Rong & Sun, Yi-Fei & Li, Wen-Zhi & Xie, Yan & Chen, Guang-Jin & Sun, Chang-Yu & Yang, Lan-Ying & Qin, Hui-Bo & Pang, Wei-Xin & Li, Qing-Ping, 2019. "Structural transition range of methane-ethane gas hydrates during decomposition below ice point," Applied Energy, Elsevier, vol. 250(C), pages 873-881.
    3. Chen, Ruihua & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Xu, Weicong, 2022. "Energy recovery from wastewater in deep-sea mining: Feasibility study on an energy supply solution with cold wastewater," Applied Energy, Elsevier, vol. 305(C).
    4. Min Zhang & Yu Huang & Yangjuan Bao, 2016. "The mechanism of shallow submarine landslides triggered by storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1373-1383, March.
    5. Wang, Yanbin & Gao, Deli, 2022. "Study on the marine environment limiting conditions of deepwater drilling for natural gas hydrate," Applied Energy, Elsevier, vol. 312(C).
    6. Marianna Cavallo & Alicia Bugeja Said & José A Pérez Agúndez, 2023. "Who Is in and Who Is out in Ocean Economies Development?," Post-Print hal-04044150, HAL.
    7. Yang Yang & Lili Ren & Mingxuan Wu & Hailong Wang & Fengfei Song & L. Ruby Leung & Xin Hao & Jiandong Li & Lei Chen & Huimin Li & Liangying Zeng & Yang Zhou & Pinya Wang & Hong Liao & Jing Wang & Zhen, 2022. "Publisher Correction: Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    8. Min Zhang & Yu Huang & Yangjuan Bao, 2016. "The mechanism of shallow submarine landslides triggered by storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1373-1383, March.
    9. Zainul Haza & Indra Harahap & Lema Dakssa, 2013. "Experimental studies of the flow-front and drag forces exerted by subaqueous mudflow on inclined base," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 587-611, September.
    10. Betsy Mason, 2003. "National Academy calls for sea change in ocean efforts," Nature, Nature, vol. 426(6962), pages 6-6, November.
    11. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
    12. Mario Sprovieri & Andrea Cucco & Francesca Budillon & Daniela Salvagio Manta & Fabio Trincardi & Salvatore Passaro, 2022. "Large-Scale Mercury Dispersion at Sea: Modelling a Multi-Hazard Case Study from Augusta Bay (Central Mediterranean Sea)," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    13. Marianna Cavallo & Alicia Bugeja Said & José A. Pérez Agúndez, 2023. "Who Is in and Who Is out in Ocean Economies Development?," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    14. Julie Shoemaker & Daniel Schrag, 2013. "The danger of overvaluing methane’s influence on future climate change," Climatic Change, Springer, vol. 120(4), pages 903-914, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Zhang & Weilong Zhang & Yu Huang & Yuelou Cai & Shiwei Shen, 2019. "Failure mechanism of submarine slopes based on the wave flume test," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1249-1262, April.
    2. Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
    3. Ruhua Zhang & Wen Zhou & Wenshou Tian & Yue Zhang & Junxia Zhang & Jiali Luo, 2024. "A stratospheric precursor of East Asian summer droughts and floods," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Cong Liu & Shucai Li & Zongqing Zhou & Liping Li & Shaoshuai Shi & Meixia Wang & Chenglu Gao, 2020. "Physical model tests to determine the mechanism of submarine landslides under the effect of sea waves," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1451-1474, July.
    5. Shunkai Liu & Yuxing Nie & Wei Hu & Mohammed Ashiru & Zhong Li & Jun Zuo, 2022. "The Influence of Mixing Degree between Coarse and Fine Particles on the Strength of Offshore and Coast Foundations," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    6. Jing-Li Fan & Shuo Shen & Jian-Da Wang & Shi-Jie Wei & Xian Zhang & Ping Zhong & Hang Wang, 2020. "Scientific and technological power and international cooperation in the field of natural hazards: a bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 807-827, July.
    7. Min Zhang & Ming Niu & Shiwei Shen & Shulin Dai & Yan Xu, 2021. "Review of natural gas hydrate dissociation effects on seabed stability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1035-1045, June.
    8. Xie, Yan & Cheng, Liwei & Feng, Jingchun & Zheng, Tao & Zhu, Yujie & Zeng, Xinyang & Sun, Changyu & Chen, Guangjin, 2024. "Kinetics behaviors of CH4 hydrate formation in porous sediments: Non-unidirectional influence of sediment particle size on hydrate formation," Energy, Elsevier, vol. 289(C).
    9. Zheng, Jiayu & Du, Junqiao & Huang, Yuan & Zhao, Jinchao & Wu, Jiwei & Zhang, Yanhong & Wang, Hualin, 2024. "Cementation breaking and grit separation characteristics of weakly cemented natural gas hydrate by a new structure hydrocyclone," Applied Energy, Elsevier, vol. 361(C).
    10. Hausfather, Zeke, 2015. "Bounding the climate viability of natural gas as a bridge fuel to displace coal," Energy Policy, Elsevier, vol. 86(C), pages 286-294.
    11. Shi, Jihao & Li, Junjie & Usmani, Asif Sohail & Zhu, Yuan & Chen, Guoming & Yang, Dongdong, 2021. "Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach," Energy, Elsevier, vol. 219(C).
    12. Xiaoxu, Duan & Jiwei, Wu & Yuan, Huang & Haitao, Lin & Shouwei, Zhou & Junlong, Zhu & Shaohua, Nie & Guorong, Wang & Liang, Ma & Hualin, Wang, 2023. "Achieving effective and simultaneous consolidation breaking and sand removal in solid fluidization development of natural gas hydrate," Applied Energy, Elsevier, vol. 351(C).
    13. Liang, Jianzhen & Feng, Jing-Chun & Chen, Xiao & Li, Cun & Zhang, Si, 2024. "Increasing temperature and sulfate enhances the efficiency of methane abatement in an anaerobic oxidation of methane bioreactor (AOMB) system," Applied Energy, Elsevier, vol. 362(C).
    14. Bradley, Tom & Maga, Daniel & Antón, Sara, 2015. "Unified approach to Life Cycle Assessment between three unique algae biofuel facilities," Applied Energy, Elsevier, vol. 154(C), pages 1052-1061.
    15. Yang, Mingjun & Zhao, Jie & Zheng, Jia-nan & Song, Yongchen, 2019. "Hydrate reformation characteristics in natural gas hydrate dissociation process: A review," Applied Energy, Elsevier, vol. 256(C).
    16. Xie, Yan & Zheng, Tao & Zhong, Jin-Rong & Zhu, Yu-Jie & Wang, Yun-Fei & Zhang, Yu & Li, Rui & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Experimental research on self-preservation effect of methane hydrate in porous sediments," Applied Energy, Elsevier, vol. 268(C).
    17. Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
    18. Zhao, Jie & Zheng, Jia-nan & Ma, Shihui & Song, Yongchen & Yang, Mingjun, 2020. "Formation and production characteristics of methane hydrates from marine sediments in a core holder," Applied Energy, Elsevier, vol. 275(C).
    19. Seshadri, Ashwin K., 2015. "Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon," Ecological Economics, Elsevier, vol. 114(C), pages 47-57.
    20. Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "Towards the Carnot efficiency with a novel electrochemical heat engine based on the Carnot cycle: Thermodynamic considerations," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6490-:d:1445522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.