Hydrate reformation characteristics in natural gas hydrate dissociation process: A review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.113878
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Bin & Dong, Hongsheng & Liu, Yanzhen & Lv, Xin & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Evaluation of thermal stimulation on gas production from depressurized methane hydrate depositsā," Applied Energy, Elsevier, vol. 227(C), pages 710-718.
- Bhade, Piyush & Phirani, Jyoti, 2015. "Gas production from layered methane hydrate reservoirs," Energy, Elsevier, vol. 82(C), pages 686-696.
- Chong, Zheng Rong & Yin, Zhenyuan & Tan, Jun Hao Clifton & Linga, Praveen, 2017. "Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach," Applied Energy, Elsevier, vol. 204(C), pages 1513-1525.
- Wang, Pengfei & Wang, Shenglong & Song, Yongchen & Yang, Mingjun, 2018. "Dynamic measurements of methane hydrate formation/dissociation in different gas flow direction," Applied Energy, Elsevier, vol. 227(C), pages 703-709.
- Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
- Yin, Zhenyuan & Moridis, George & Chong, Zheng Rong & Linga, Praveen, 2019. "Effectiveness of multi-stage cooling processes in improving the CH4-hydrate saturation uniformity in sandy laboratory samples," Applied Energy, Elsevier, vol. 250(C), pages 729-747.
- Li, Bo & Li, Xiao-Sen & Li, Gang & Feng, Jing-Chun & Wang, Yi, 2014. "Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 129(C), pages 274-286.
- Yin, Zhenyuan & Moridis, George & Chong, Zheng Rong & Tan, Hoon Kiang & Linga, Praveen, 2018. "Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium," Applied Energy, Elsevier, vol. 230(C), pages 444-459.
- Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
- Yang, Mingjun & Fu, Zhe & Jiang, Lanlan & Song, Yongchen, 2017. "Gas recovery from depressurized methane hydrate deposits with different water saturations," Applied Energy, Elsevier, vol. 187(C), pages 180-188.
- Zheng Su & Yuncheng Cao & Nengyou Wu & Yong He, 2011. "Numerical Analysis on Gas Production Efficiency from Hydrate Deposits by Thermal Stimulation: Application to the Shenhu Area, South China Sea," Energies, MDPI, vol. 4(2), pages 1-20, February.
- Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Chen, Zhao-Yang, 2013. "Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system," Applied Energy, Elsevier, vol. 110(C), pages 90-97.
- Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.
- Yin, Zhenyuan & Moridis, George & Tan, Hoon Kiang & Linga, Praveen, 2018. "Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium," Applied Energy, Elsevier, vol. 220(C), pages 681-704.
- Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
- Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
- Kamal, Muhammad Shahzad & Hussein, Ibnelwaleed A. & Sultan, Abdullah S. & von Solms, Nicolas, 2016. "Application of various water soluble polymers in gas hydrate inhibition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 206-225.
- Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Feng, Jing-Chun, 2013. "A three-dimensional study on methane hydrate decomposition with different methods using five-spot well," Applied Energy, Elsevier, vol. 112(C), pages 83-92.
- Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
- Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
- Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).
- Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
- Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
- Wang, Bin & Dong, Hongsheng & Fan, Zhen & Liu, Shuyang & Lv, Xin & Li, Qingping & Zhao, Jiafei, 2020. "Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydrate sediments," Applied Energy, Elsevier, vol. 262(C).
- Yin, Zhenyuan & Wan, Qing-Cui & Gao, Qiang & Linga, Praveen, 2020. "Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments," Applied Energy, Elsevier, vol. 271(C).
- Guo, Xianwei & Xu, Lei & Wang, Bin & Sun, Lingjie & Liu, Yulong & Wei, Rupeng & Yang, Lei & Zhao, Jiafei, 2020. "Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation," Applied Energy, Elsevier, vol. 276(C).
- Wang, Bin & Liu, Shuyang & Wang, Pengfei, 2022. "Microwave-assisted high-efficient gas production of depressurization-induced methane hydrate exploitation," Energy, Elsevier, vol. 247(C).
- Sun, Huiru & Chen, Bingbing & Zhao, Guojun & Zhao, Yuechao & Yang, Mingjun & Song, Yongchen, 2020. "The enhancement effect of water-gas two-phase flow on depressurization process: Important for gas hydrate production," Applied Energy, Elsevier, vol. 276(C).
- Yin, Zhenyuan & Zhang, Shuyu & Koh, Shanice & Linga, Praveen, 2020. "Estimation of the thermal conductivity of a heterogeneous CH4-hydrate bearing sample based on particle swarm optimization," Applied Energy, Elsevier, vol. 271(C).
- Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
- Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
- Wan, Qing-Cui & Si, Hu & Li, Gang & Feng, Jing-Chun & Li, Bo, 2020. "Heterogeneity properties of methane hydrate formation in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 261(C).
- Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
- Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
- Zhao, Jie & Zheng, Jia-nan & Ma, Shihui & Song, Yongchen & Yang, Mingjun, 2020. "Formation and production characteristics of methane hydrates from marine sediments in a core holder," Applied Energy, Elsevier, vol. 275(C).
- Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
- Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
- Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
More about this item
Keywords
Gas hydrate exploitation; Hydrate reformation; Thermal stimulation; Depressurization; Inhibitor;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s030626191931565x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.