IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002964.html
   My bibliography  Save this article

Cementation breaking and grit separation characteristics of weakly cemented natural gas hydrate by a new structure hydrocyclone

Author

Listed:
  • Zheng, Jiayu
  • Du, Junqiao
  • Huang, Yuan
  • Zhao, Jinchao
  • Wu, Jiwei
  • Zhang, Yanhong
  • Wang, Hualin

Abstract

Solid fluidization exploitation technology is one of the most promising methods for the safe exploitation of shallow natural gas hydrates (NGH) in the deep sea. However, after primary jet breaking in the solid fluidization exploitation, the hydrate and argillaceous silt particles are in a state of weak cementation and agglomeration. When the argillaceous silt particles enter the offshore drilling platform with the drilling fluid, it causes substantial sand production, high energy consumption, and pipeline blockage, considerably affecting the development process of the NGH test. Therefore, in-situ desanding has become one of the key technologies of solid fluidization exploitation. In this study, a coupling method of hydrocyclone cementation breaking and hydrocyclone desanding was proposed, and a new structure of cementation breaking and grit separation hydrocyclone was designed. In a lab-designed cementation breaking and grit separation hydrocyclone system, the cementation breaking and grit separation characteristics of weakly cemented NGH similar materials in the swirl flow field were studied. The experimental results under the operating conditions studied show that the swirl flow field exhibits good cementation breaking and grit separation performance for weakly cemented NGH similar materials. For weakly cemented NGH similar materials with a compressive strength of 0.06–0.42 MPa, the cementation breaking efficiency of the cementation breaking and grit separation hydrocyclone is in the range of 27.17–99.61%. After the cementation breaking, the mixture of hydrate similar materials (hydrophilic polyethylene powder) and quartz sand was separated in the hydrocyclone. The separation efficiency of hydrate similar materials is 27.59–99.64%, and the desanding efficiency is 87.66–99.98%. The cementation breaking and grit separation of weakly cemented NGH similar materials were successfully realized. Based on the experimental data, a multiple regression model for the cementation strength of similar materials and the swirl flow field strength was established using the least squares method. This method is expected to provide new technical support for in-situ desanding and safe exploitation of the deep-sea shallow NGH production process.

Suggested Citation

  • Zheng, Jiayu & Du, Junqiao & Huang, Yuan & Zhao, Jinchao & Wu, Jiwei & Zhang, Yanhong & Wang, Hualin, 2024. "Cementation breaking and grit separation characteristics of weakly cemented natural gas hydrate by a new structure hydrocyclone," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002964
    DOI: 10.1016/j.apenergy.2024.122913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Chen, Zhao-Yang & Li, Gang & Zhang, Yu, 2015. "Investigation into optimization condition of thermal stimulation for hydrate dissociation in the sandy reservoir," Applied Energy, Elsevier, vol. 154(C), pages 995-1003.
    2. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    3. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
    5. Haitao Li & Na Wei & Lin Jiang & Jinzhou Zhao & Zhenjun Cui & Wantong Sun & Liehui Zhang & Shouwei Zhou & Hanming Xu & Xuchao Zhang & Chao Zhang & Xiaoran Wang, 2020. "Evaluation of Experimental Setup and Procedure for Rapid Preparation of Natural Gas Hydrate," Energies, MDPI, vol. 13(3), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoxu, Duan & Jiwei, Wu & Yuan, Huang & Haitao, Lin & Shouwei, Zhou & Junlong, Zhu & Shaohua, Nie & Guorong, Wang & Liang, Ma & Hualin, Wang, 2023. "Achieving effective and simultaneous consolidation breaking and sand removal in solid fluidization development of natural gas hydrate," Applied Energy, Elsevier, vol. 351(C).
    2. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
    3. Chen, Ye & Gao, Yonghai & Zhao, Yipeng & Chen, Litao & Dong, Changyin & Sun, Baojiang, 2018. "Experimental investigation of different factors influencing the replacement efficiency of CO2 for methane hydrate," Applied Energy, Elsevier, vol. 228(C), pages 309-316.
    4. Dong, Shuang & Yang, Mingjun & Zhang, Lei & Zheng, Jia-nan & Song, Yongchen, 2023. "Methane hydrate exploitation characteristics and thermodynamic non-equilibrium mechanisms by long depressurization method," Energy, Elsevier, vol. 280(C).
    5. Wang, Xiao-Hui & Chen, Yun & Li, Xing-Xun & Xu, Qiang & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "An exergy-based energy efficiency analysis on gas production from gas hydrates reservoir by brine stimulation combined depressurization method," Energy, Elsevier, vol. 231(C).
    6. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    7. Jyoti Shanker Pandey & Charilaos Karantonidis & Adam Paul Karcz & Nicolas von Solms, 2020. "Enhanced CH 4 -CO 2 Hydrate Swapping in the Presence of Low Dosage Methanol," Energies, MDPI, vol. 13(20), pages 1-30, October.
    8. Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).
    9. Liu, Zheng & Zheng, Junjie & Wang, Zhiyuan & Gao, Yonghai & Sun, Baojiang & Liao, Youqiang & Linga, Praveen, 2023. "Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs," Applied Energy, Elsevier, vol. 341(C).
    10. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    11. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Tu, Guigang & Nie, Shuaishuai & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2022. "Commercial production potential evaluation of injection-production mode for CH-Bk hydrate reservoir and investigation of its stimulated potential by fracture network," Energy, Elsevier, vol. 239(PB).
    12. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    13. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2017. "Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs," Energy, Elsevier, vol. 125(C), pages 62-71.
    14. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    15. Nan Li & Rezeye Rehemituli & Jie Zhang & Changyu Sun, 2020. "One-Dimensional Study on Hydrate Formation from Migrating Dissolved Gas in Sandy Sediments," Energies, MDPI, vol. 13(7), pages 1-13, March.
    16. Shi, Jihao & Li, Junjie & Usmani, Asif Sohail & Zhu, Yuan & Chen, Guoming & Yang, Dongdong, 2021. "Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach," Energy, Elsevier, vol. 219(C).
    17. Xie, Yan & Zheng, Tao & Zhong, Jin-Rong & Zhu, Yu-Jie & Wang, Yun-Fei & Zhang, Yu & Li, Rui & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Experimental research on self-preservation effect of methane hydrate in porous sediments," Applied Energy, Elsevier, vol. 268(C).
    18. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    19. Yang Tang & Peng Zhao & Xiaoyu Fang & Guorong Wang & Lin Zhong & Xushen Li, 2022. "Numerical Simulation on Erosion Wear Law of Pressure-Controlled Injection Tool in Solid Fluidization Exploitation of the Deep-Water Natural Gas Hydrate," Energies, MDPI, vol. 15(15), pages 1-17, July.
    20. Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.