IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics0306261924008687.html
   My bibliography  Save this article

Methane hydrate phase transition in marine clayey sediments: Enhanced structure change and solid migration

Author

Listed:
  • Kou, Xuan
  • Zhang, Heng
  • Li, Xiao-Sen
  • Chen, Zhao-Yang
  • Wang, Yi

Abstract

Natural gas hydrates are abundant in marine sediments and have great potential for resource development. However, there is still a lack of clarity regarding the impact of hydrate phase transition on the structure change of marine sediments. Hence, we conducted in-situ microscale experiments of hydrate phase transition in clayey sediments obtained from the active Haima cold seep area in South China Sea. By utilizing advanced X-ray Computed Tomography technology and a controlled method of hydrate phase transition, we successfully observed the dynamic behaviors of hydrate formation and decomposition, and revealed their effects on sediment structure and solid migration. Our findings suggested that methane hydrates initially occupy primary pores while generating new pores and fractures in clayey sediments. These processes lead to changes in pore morphology and anisotropy, characterized by a decrease in the degree of anisotropy and an increase in fractural and shape factor of pores. During hydrate decomposition, methane hydrates tend to be reformed in clayey sediments before initiating the decomposition process. More significantly, the combining effects of hydrates reformation and decomposition lead to occurrence of enlarged pores in sediments, resulting in unpredictable structural failure of the sediment. Furthermore, the simulation results of solid migration in sediments revealed that the solid particles migrate towards the bottom of the sediments during hydrate formation, leading to the compaction of sediment structure. Conversely, during hydrate decomposition, the solid particles move significantly towards the upper region of the sediment due to fluid seepage through newly generated and enlarged pores. The structure change and solid migration mechanisms revealed in this study highlight the potential risks during hydrate phase transition such as sediment instability and sand production, offering valuable insights into efficient and secure hydrate exploitation.

Suggested Citation

  • Kou, Xuan & Zhang, Heng & Li, Xiao-Sen & Chen, Zhao-Yang & Wang, Yi, 2024. "Methane hydrate phase transition in marine clayey sediments: Enhanced structure change and solid migration," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008687
    DOI: 10.1016/j.apenergy.2024.123485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924008687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Dawei & Qu, Aoxing & Wang, Zifei & Lv, Xin & Li, Qingping & Leng, Shudong & Xiao, Bo & Zhang, Lunxiang & Zhao, Jiafei & Yang, Lei & Song, Yongchen, 2023. "Fluid flow-induced fine particle migration and its effects on gas and water production behavior from gas hydrate reservoir," Applied Energy, Elsevier, vol. 331(C).
    2. Zhou, Xuebing & Kang, Zhanxiao & Lu, Jingsheng & Fan, Jintu & Zang, Xiaoya & Liang, Deqing, 2023. "Recyclable and efficient hydrate-based CH4 storage strengthened by fabrics," Applied Energy, Elsevier, vol. 336(C).
    3. Bian, Hang & Qin, Xuwen & Sun, Jinsheng & Luo, Wanjing & Lu, Cheng & Zhu, Jian & Ma, Chao & Zhou, Yingfang, 2023. "The impact of mineral compositions on hydrate morphology evolution and phase transition hysteresis in natural clayey silts," Energy, Elsevier, vol. 274(C).
    4. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    5. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    6. Yang, Mingjun & Chong, Zheng Rong & Zheng, Jianan & Song, Yongchen & Linga, Praveen, 2017. "Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1346-1360.
    7. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Zhang, Yu & Chen, Zhao-Yang, 2020. "Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods," Applied Energy, Elsevier, vol. 277(C).
    8. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Formation mechanism of heterogeneous hydrate-bearing sediments," Applied Energy, Elsevier, vol. 326(C).
    9. Zhao, Yapeng & Liu, Jiaqi & Sang, Songkui & Hua, Likun & Kong, Liang & Zeng, Zhaoyuan & Yuan, Qingmeng, 2023. "Experimental investigation on the permeability characteristics of methane hydrate-bearing clayey-silty sediments considering various factors," Energy, Elsevier, vol. 269(C).
    10. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
    11. Jingsheng Lu & Youming Xiong & Dongliang Li & Xiaodong Shen & Qi Wu & Deqing Liang, 2018. "Experimental Investigation of Characteristics of Sand Production in Wellbore during Hydrate Exploitation by the Depressurization Method," Energies, MDPI, vol. 11(7), pages 1-17, June.
    12. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Wang & Lei Zhan & Jing-Chun Feng & Xiao-Sen Li, 2019. "Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation," Energies, MDPI, vol. 12(22), pages 1-15, November.
    2. Yang, Lei & Shi, Kangji & Qu, Aoxing & Liang, Huiyong & Li, Qingping & Lv, Xin & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Xiao, Bo & Yang, Shengxiong & Zhao, Jiafei & Song, Yongchen, 2023. "The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments," Energy, Elsevier, vol. 276(C).
    3. Hao Peng & Xiaosen Li & Zhaoyang Chen & Yu Zhang & Changyu You, 2022. "Key Points and Current Studies on Seepage Theories of Marine Natural Gas Hydrate-Bearing Sediments: A Narrative Review," Energies, MDPI, vol. 15(14), pages 1-33, July.
    4. Wu, Peng & Li, Yanghui & Yu, Tao & Wu, Zhaoran & Huang, Lei & Wang, Haijun & Song, Yongchen, 2023. "Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state," Energy, Elsevier, vol. 263(PE).
    5. Xie, Yan & Zheng, Tao & Zhu, Yujie & Sun, Changyu & Chen, Guangjin & Feng, Jingchun, 2024. "H2 promotes the premature replacement of CH4–CO2 hydrate even when the CH4 gas-phase pressure exceeds the phase equilibrium pressure of CH4 hydrate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    6. Guo, Zeyu & Chen, Xin & Wang, Bo & Ren, Xingwei, 2023. "Two-phase relative permeability of hydrate-bearing sediments: A theoretical model," Energy, Elsevier, vol. 275(C).
    7. Zhao, Jie & Zheng, Jia-nan & Ma, Shihui & Song, Yongchen & Yang, Mingjun, 2020. "Formation and production characteristics of methane hydrates from marine sediments in a core holder," Applied Energy, Elsevier, vol. 275(C).
    8. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Formation mechanism of heterogeneous hydrate-bearing sediments," Applied Energy, Elsevier, vol. 326(C).
    9. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Memory effect of gas hydrate: Influencing factors of hydrate reformation and dissociation behaviors☆," Applied Energy, Elsevier, vol. 306(PA).
    10. Wan, Kun & Wu, Tian-Wei & Wang, Yi & Li, Xiao-Sen & Liu, Jian-Wu & Kou, Xuan & Feng, Jing-Chun, 2023. "Large-scale experimental study of heterogeneity in different types of hydrate reservoirs by horizontal well depressurization method," Applied Energy, Elsevier, vol. 332(C).
    11. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    12. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    13. Fang, Bin & Lü, Tao & Li, Wei & Moultos, Othonas A. & Vlugt, Thijs J.H. & Ning, Fulong, 2024. "Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions," Energy, Elsevier, vol. 288(C).
    14. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    15. Li, Yanlong & Wu, Nengyou & Gao, Deli & Chen, Qiang & Liu, Changling & Yang, Daoyong & Jin, Yurong & Ning, Fulong & Tan, Mingjian & Hu, Gaowei, 2021. "Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production," Energy, Elsevier, vol. 219(C).
    16. Peng, Hao & Li, Xiaosen & Chen, Zhaoyang & Zhang, Yu & Ji, Hongfei & Weng, Yifan, 2024. "Effect of gravel pack permeability on horizontal well productivity loss under secondary methane hydrate formation: Experimental optimization of 3D randomly distributed mixed sand pack," Applied Energy, Elsevier, vol. 371(C).
    17. Shi, Jihao & Li, Junjie & Usmani, Asif Sohail & Zhu, Yuan & Chen, Guoming & Yang, Dongdong, 2021. "Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach," Energy, Elsevier, vol. 219(C).
    18. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    19. Xiaoxu, Duan & Jiwei, Wu & Yuan, Huang & Haitao, Lin & Shouwei, Zhou & Junlong, Zhu & Shaohua, Nie & Guorong, Wang & Liang, Ma & Hualin, Wang, 2023. "Achieving effective and simultaneous consolidation breaking and sand removal in solid fluidization development of natural gas hydrate," Applied Energy, Elsevier, vol. 351(C).
    20. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.