IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6397-d1443480.html
   My bibliography  Save this article

Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis

Author

Listed:
  • Yang Lei

    (College of Horticulture, Shanxi Agricultural University, Taiyuan 030031, China)

  • Lihong Xu

    (Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030024, China)

  • Minggui Wang

    (Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030024, China)

  • Sheng Sun

    (College of Horticulture, Shanxi Agricultural University, Taiyuan 030031, China)

  • Yuhua Yang

    (Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030024, China)

  • Chao Xu

    (Sci-Tech Information and Strategic Research Center of Shanxi Province, Taiyuan 030031, China)

Abstract

Applying biochar to tomato cultivation presents a beneficial strategy that can enhance both yield and fruit quality, crucial for sustainable agricultural practices. However, a review of the existing literature on the effects of biochar indicates a significant variability in outcomes, suggesting the need for a more nuanced understanding of biochar application in relation to soil and biochar conditions. This study conducts a meta-analysis on the literature published before March 2024 to investigate the impacts of biochar properties, agricultural practices, and soil properties on the yield and fruit quality of tomato. The results indicated that biochar application significantly increased tomato yield by 29.55%, total soluble solids (TSS) by 4.28%, and vitamin C (VC) by 6.77% compared to control treatments without biochar, especially at higher application rates. However, the benefits may wane over time due to biochar aging in the soil, requiring periodic replenishment. The type of biochar and pyrolysis temperature, particularly wood and straw biochar pyrolyzed at 401–500 °C, were found to be most effective for boosting yield and quality. Additionally, initial soil properties, including soil organic matter, pH, and nutrient levels, interact with biochar to influence outcomes, with biochar being particularly beneficial for soils with a high bulk density and low soil organic matter (SOM) or nutrient deficiencies. This study underscores the potential of biochar as a multifaceted strategy in tomato cultivation, enhancing not only yield but also the nutritional value of the fruit, while simultaneously improving soil health.

Suggested Citation

  • Yang Lei & Lihong Xu & Minggui Wang & Sheng Sun & Yuhua Yang & Chao Xu, 2024. "Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis," Sustainability, MDPI, vol. 16(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6397-:d:1443480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jong-Mun Lee & Hyun-Cheol Jeong & Hyo-Suk Gwon & Hyoung-Seok Lee & Hye-Ran Park & Guen-Sik Kim & Do-Gyun Park & Sun-Il Lee, 2023. "Effects of Biochar on Methane Emissions and Crop Yields in East Asian Paddy Fields: A Regional Scale Meta-Analysis," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    2. Zhang, Chuan & Li, Xinyu & Yan, Haofang & Ullah, Ikram & Zuo, Zhiyu & Li, Lanlan & Yu, Jianjun, 2020. "Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    4. Heling Fan & Yanshu Zhang & Jingchen Li & Jiajun Jiang & Abdul Waheed & Shuguang Wang & Syed Majid Rasheed & Li Zhang & Rongping Zhang, 2023. "Effects of Organic Fertilizer Supply on Soil Properties, Tomato Yield, and Fruit Quality: A Global Meta-Analysis," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    5. Indranil Samui & Milan Skalicky & Sukamal Sarkar & Koushik Brahmachari & Sayan Sau & Krishnendu Ray & Akbar Hossain & Argha Ghosh & Manoj Kumar Nanda & Richard W. Bell & Mohammed Mainuddin & Marian Br, 2020. "Yield Response, Nutritional Quality and Water Productivity of Tomato ( Solanum lycopersicum L.) are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaodong & Tian, Wei & Zheng, Wende & Shah, Sadiq & Li, Jianshe & Wang, Xiaozhuo & Zhang, Xueyan, 2023. "Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis," Agricultural Water Management, Elsevier, vol. 280(C).
    2. Hyoung-Seok Lee & Hyo-Suk Gwon & Sun-Il Lee & Hye-Ran Park & Jong-Mun Lee & Do-Gyun Park & So-Ra Lee & So-Hyeon Eom & Taek-Keun Oh, 2024. "Reducing Methane Emissions with Humic Acid–Iron Complex in Rice Cultivation: Impact on Greenhouse Gas Emissions and Rice Yield," Sustainability, MDPI, vol. 16(10), pages 1-14, May.
    3. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
    4. Li, Hao & Hou, Xuemin & Bertin, Nadia & Ding, Risheng & Du, Taisheng, 2023. "Quantitative responses of tomato yield, fruit quality and water use efficiency to soil salinity under different water regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    5. Zhang, Cong & Huang, Xian & Zhang, Xingwei & Wan, Li & Wang, Zhenhong, 2021. "Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    7. Masinde, Peter & Wahome, Bernard M., 2022. "The effect of biochar from rice husks on evapotranspiration, vegetative growth and fruit yield of greenhouse tomato cultivar anna F1 grown in two soil types," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 22(05).
    8. Sukamal Sarkar & Milan Skalicky & Akbar Hossain & Marian Brestic & Saikat Saha & Sourav Garai & Krishnendu Ray & Koushik Brahmachari, 2020. "Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    9. Vladimir Ivanovich Trukhachev & Sergey Leonidovich Belopukhov & Marina Grigoryeva & Inna Ivanovna Dmitrevskaya, 2024. "Study of the Sustainability of Ecological and Chemical Indicators of Soils in Organic Farming," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    10. Maria A. Lilli & Nikolaos V. Paranychianakis & Konstantinos Lionoudakis & Anna Kritikaki & Styliani Voutsadaki & Maria L. Saru & Konstantinos Komnitsas & Nikolaos P. Nikolaidis, 2023. "The Impact of Sewage-Sludge- and Olive-Mill-Waste-Derived Biochar Amendments to Tomato Cultivation," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    11. Abdelghany, Ahmed Elsayed & Dou, Zhiyao & Alashram, Mohamed G. & Eltohamy, Kamel Mohamed & Elrys, Ahmed S. & Liu, Xiaoqiang & Wu, You & Cheng, Minghui & Fan, Junliang & Zhang, Fucang, 2023. "The joint application of biochar and nitrogen enhances fruit yield, quality and water-nitrogen productivity of water-stressed greenhouse tomato under drip fertigation," Agricultural Water Management, Elsevier, vol. 290(C).
    12. Dou, Zhiyao & Feng, Hanlong & Zhang, Hao & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun & Fan, Junliang, 2023. "Silicon application mitigated the adverse effects of salt stress and deficit irrigation on drip-irrigated greenhouse tomato," Agricultural Water Management, Elsevier, vol. 289(C).
    13. Du, Bin & Shukla, M.K. & Yang, Xiaolin & Du, Taisheng, 2023. "Enhanced fruit yield and quality of tomato by photosynthetic bacteria and CO2 enrichment under reduced irrigation," Agricultural Water Management, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6397-:d:1443480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.