IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9200-d1165474.html
   My bibliography  Save this article

Effects of Biochar on Methane Emissions and Crop Yields in East Asian Paddy Fields: A Regional Scale Meta-Analysis

Author

Listed:
  • Jong-Mun Lee

    (National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea)

  • Hyun-Cheol Jeong

    (National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea)

  • Hyo-Suk Gwon

    (National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea)

  • Hyoung-Seok Lee

    (National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea)

  • Hye-Ran Park

    (National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea)

  • Guen-Sik Kim

    (National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea)

  • Do-Gyun Park

    (National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea)

  • Sun-Il Lee

    (National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea)

Abstract

Biochar emerged as a potential solution to mitigating greenhouse gas emissions, though previous studies obtained variable results regarding its effects on methane (CH 4 ) emissions and crop yields. Global meta-analyses were conducted regarding the effectiveness of biochar, though regional meta-analyses are still needed. We performed a meta-analysis of 43 published papers to obtain the central tendency of the response to biochar application in East Asian rice paddies. Biochar application significantly reduced methane emissions while increasing the soil organic carbon (SOC) content and crop yield. We identified the most significant influencing factors on the CH 4 emissions, SOC content, and crop yield. Our findings provide a scientific basis for the application of biochar to East Asian rice paddies, as well as to study the effects of biochar application in East Asian rice paddies. The numbers in parentheses represent the sample sizes.

Suggested Citation

  • Jong-Mun Lee & Hyun-Cheol Jeong & Hyo-Suk Gwon & Hyoung-Seok Lee & Hye-Ran Park & Guen-Sik Kim & Do-Gyun Park & Sun-Il Lee, 2023. "Effects of Biochar on Methane Emissions and Crop Yields in East Asian Paddy Fields: A Regional Scale Meta-Analysis," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9200-:d:1165474
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qi Zhang & Jing Xiao & Jianhui Xue & Lang Zhang, 2020. "Quantifying the Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    2. Liu, Xiaoyu & Zhou, Tong & Liu, Yuan & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2019. "Effect of mid-season drainage on CH4 and N2O emission and grain yield in rice ecosystem: A meta-analysis," Agricultural Water Management, Elsevier, vol. 213(C), pages 1028-1035.
    3. Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
    4. Chaudhary, V.P. & Singh, K.K. & Pratibha, G. & Bhattacharyya, Ranjan & Shamim, M. & Srinivas, I. & Patel, Anurag, 2017. "Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation," Energy, Elsevier, vol. 130(C), pages 307-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Lei & Lihong Xu & Minggui Wang & Sheng Sun & Yuhua Yang & Chao Xu, 2024. "Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis," Sustainability, MDPI, vol. 16(15), pages 1-19, July.
    2. Hyoung-Seok Lee & Hyo-Suk Gwon & Sun-Il Lee & Hye-Ran Park & Jong-Mun Lee & Do-Gyun Park & So-Ra Lee & So-Hyeon Eom & Taek-Keun Oh, 2024. "Reducing Methane Emissions with Humic Acid–Iron Complex in Rice Cultivation: Impact on Greenhouse Gas Emissions and Rice Yield," Sustainability, MDPI, vol. 16(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lychuk, Taras E. & Hill, Robert L. & Izaurralde, Roberto C. & Momen, Bahram & Thomson, Allison M., 2021. "Evaluation of climate change impacts and effectiveness of adaptation options on nitrate loss, microbial respiration, and soil organic carbon in the Southeastern USA," Agricultural Systems, Elsevier, vol. 193(C).
    2. Kanbur, Ravi & Bento, Antonio M. & Leard, Benjamin, 2012. "SUPER-ADDITIONALITY: A Neglected Force in Markets for Carbon Offsets," Working Papers 128811, Cornell University, Department of Applied Economics and Management.
    3. Mohammad Mizanur Rahman & Mohammed Zia Uddin Kamal & Senaratne Ranamukhaarachchi & Mohammad Saiful Alam & Mohammad Khairul Alam & Mohammad Arifur Rahman Khan & Mohammad Moshiul Islam & Mohammad Ashraf, 2022. "Effects of Organic Amendments on Soil Aggregate Stability, Carbon Sequestration, and Energy Use Efficiency in Wetland Paddy Cultivation," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    4. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
    6. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    7. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    9. Hongpeng Guo & Boqun Fan & Chulin Pan, 2021. "Study on Mechanisms Underlying Changes in Agricultural Carbon Emissions: A Case in Jilin Province, China, 1998–2018," IJERPH, MDPI, vol. 18(3), pages 1-17, January.
    10. Jayanta Layek & Rumi Narzari & Samarendra Hazarika & Anup Das & Krishnappa Rangappa & Shidayaichenbi Devi & Arumugam Balusamy & Saurav Saha & Sandip Mandal & Ramkrushna Gandhiji Idapuganti & Subhash B, 2022. "Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    11. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Syaharudin Zaibon & Mehnaz Mosharrof, 2021. "Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    12. Singh, Ranbir & Singh, Ajay & Sheoran, Parvender & Fagodiya, R.K. & Rai, Arvind Kumar & Chandra, Priyanka & Rani, Sonia & Yadav, Rajender Kumar & Sharma, P.C., 2022. "Energy efficiency and carbon footprints of rice-wheat system under long-term tillage and residue management practices in western Indo-Gangetic Plains in India," Energy, Elsevier, vol. 244(PA).
    13. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    14. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Azharuddin Abd Aziz & Mehnaz Mosharrof, 2022. "Combined Use of Biochar with 15 Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    15. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    16. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    17. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
    18. Karolina Barčauskaitė & Olga Anne & Ieva Mockevičienė & Regina Repšienė & Gintaras Šiaudinis & Danutė Karčauskienė, 2023. "Determination of Heavy Metals Immobilization by Chemical Fractions in Contaminated Soil Amended with Biochar," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    19. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    20. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9200-:d:1165474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.