IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i3p304-d1580490.html
   My bibliography  Save this article

Dynamic Water and Fertilizer Management Strategy for Greenhouse Tomato Based on Morphological Characteristics

Author

Listed:
  • Zhiyu Zuo

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China)

  • Tianyuan Lü

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Jicheng Sun

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Haitao Peng

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Deyong Yang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China)

  • Jinxiu Song

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China)

  • Guoxin Ma

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China)

  • Hanping Mao

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China)

Abstract

A dynamic management strategy for water and fertilizer application based on morphological characteristics was developed to enhance water use efficiency (WUE) and fruit yield in greenhouse-cultivated tomato ( Solanum lycopersicum L.). Multivariate regression analysis was employed to determine the baseline water and fertilizer requirements and to evaluate the effects of varying irrigation and fertilization regimes on fruit yield and WUE. A coupled irrigation–fertilization experiment was conducted, and regression models were established to describe the changes in stem diameter and plant height under these regimes. These models were validated experimentally. The results showed that irrigation significantly influenced both tomato fruit yield and WUE, while fertilization significantly impacted yield, but not WUE. No interactive effects between irrigation and fertilization were observed for either parameter. Stem diameter and plant height were positively correlated with the irrigation and fertilization levels. The proposed dynamic management strategy improved fruit yield by 6.9% and 14.7% under the basic and well-irrigated/fertilized conditions, respectively, compared to that of the fixed regime. Furthermore, model implementation increased WUE by 6.93% and 43.17% and improved the economic benefits by 4.9% and 20.6% under the respective conditions. This provides a practical and effective tool for optimizing water and fertilizer management in greenhouse tomato production, contributing to resource-efficient and high-yield farming practices.

Suggested Citation

  • Zhiyu Zuo & Tianyuan Lü & Jicheng Sun & Haitao Peng & Deyong Yang & Jinxiu Song & Guoxin Ma & Hanping Mao, 2025. "Dynamic Water and Fertilizer Management Strategy for Greenhouse Tomato Based on Morphological Characteristics," Agriculture, MDPI, vol. 15(3), pages 1-23, January.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:304-:d:1580490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/3/304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/3/304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cantore, V. & Lechkar, O. & Karabulut, E. & Sellami, M.H. & Albrizio, R. & Boari, F. & Stellacci, A.M. & Todorovic, M., 2016. "Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.)," Agricultural Water Management, Elsevier, vol. 167(C), pages 53-61.
    2. Xinchao Ma & Yanchao Yang & Zhanming Tan & Yunxia Cheng & Tingting Wang & Liyu Yang & Tao He & Shuang Liang, 2024. "Climate-Smart Drip Irrigation with Fertilizer Coupling Strategies to Improve Tomato Yield, Quality, Resources Use Efficiency and Mitigate Greenhouse Gases Emissions," Land, MDPI, vol. 13(11), pages 1-18, November.
    3. Sharma, Sat Pal & Leskovar, Daniel I. & Crosby, Kevin M. & Volder, Astrid & Ibrahim, A.M.H., 2014. "Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 75-85.
    4. Zhang, Chuan & Li, Xinyu & Yan, Haofang & Ullah, Ikram & Zuo, Zhiyu & Li, Lanlan & Yu, Jianjun, 2020. "Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Wang, Dan & Kang, Yaohu & Wan, Shuqin, 2007. "Effect of soil matric potential on tomato yield and water use under drip irrigation condition," Agricultural Water Management, Elsevier, vol. 87(2), pages 180-186, January.
    6. Zhang, Junwei & Xiang, Lingxiao & Liu, Yuxin & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Wuqiang & Wang, Xiaoyan & Li, Tianlai & Li, Jianming, 2024. "Optimizing irrigation schedules of greenhouse tomato based on a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 295(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-fang Wang & Juan Chen & Zhou-ping Shangguan, 2015. "Yield Responses of Wheat to Mulching Practices in Dryland Farming on the Loess Plateau," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    2. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    3. Faisal I. Zeineldin & Yousef Al-Molhim, 2021. "Polymer and deficit irrigation influence on water use efficiency and yield of muskmelon under surface and subsurface drip irrigation," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(3), pages 191-203.
    4. Rosa Francaviglia & Claudia Di Bene, 2019. "Deficit Drip Irrigation in Processing Tomato Production in the Mediterranean Basin. A Data Analysis for Italy," Agriculture, MDPI, vol. 9(4), pages 1-14, April.
    5. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    6. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    7. Guida, Gianpiero & Sellami, Mohamed Houssemeddine & Mistretta, Carmela & Oliva, Marco & Buonomo, Roberta & De Mascellis, Roberto & Patanè, Cristina & Rouphael, Youssef & Albrizio, Rossella & Giorio, P, 2017. "Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 126-135.
    8. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Rivera-Hernández, Benigno & Carrillo-Ávila, Eugenio & Obrador-Olán, José Jesús & Juárez-López, José Francisco & Aceves-Navarro, Lorenzo A. & García-López, Eustolia, 2009. "Soil moisture tension and phosphate fertilization on yield components of A-7573 sweet corn (Zea mays L.) hybrid, in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 96(9), pages 1285-1292, September.
    10. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Responses of Bacterial Community, Root-Soil Interaction and Tomato Yield to Different Practices in Subsurface Drip Irrigation," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    11. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    12. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    13. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    14. Masinde, Peter & Wahome, Bernard M., 2022. "The effect of biochar from rice husks on evapotranspiration, vegetative growth and fruit yield of greenhouse tomato cultivar anna F1 grown in two soil types," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 22(05).
    15. Wang, Xiaodong & Tian, Wei & Zheng, Wende & Shah, Sadiq & Li, Jianshe & Wang, Xiaozhuo & Zhang, Xueyan, 2023. "Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis," Agricultural Water Management, Elsevier, vol. 280(C).
    16. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    17. Yang, Kaijing & Wang, Fengxin & Shock, Clinton C. & Kang, Shaozhong & Huo, Zailin & Song, Na & Ma, Dan, 2017. "Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch," Agricultural Water Management, Elsevier, vol. 179(C), pages 260-270.
    18. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    19. Wang, Jun & Huang, Guanhua & Li, Jiusheng & Zheng, Jianhua & Huang, Quanzhong & Liu, Haijun, 2017. "Effect of soil moisture-based furrow irrigation scheduling on melon (Cucumis melo L.) yield and quality in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 167-176.
    20. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:304-:d:1580490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.