IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6042-d1435634.html
   My bibliography  Save this article

A Survey on Anomalies and Faults That May Impact the Reliability of Renewable-Based Power Systems

Author

Listed:
  • Valerio Mariani

    (ENEA-Italian National Agency for Energies, New Technologies and Sustainable Economic Development, 00196 Rome, Italy)

  • Giovanna Adinolfi

    (ENEA-Italian National Agency for Energies, New Technologies and Sustainable Economic Development, 00196 Rome, Italy)

  • Amedeo Buonanno

    (ENEA-Italian National Agency for Energies, New Technologies and Sustainable Economic Development, 00196 Rome, Italy)

  • Roberto Ciavarella

    (ENEA-Italian National Agency for Energies, New Technologies and Sustainable Economic Development, 00196 Rome, Italy)

  • Antonio Ricca

    (ENEA-Italian National Agency for Energies, New Technologies and Sustainable Economic Development, 00196 Rome, Italy)

  • Vincenzo Sorrentino

    (ENEA-Italian National Agency for Energies, New Technologies and Sustainable Economic Development, 00196 Rome, Italy)

  • Giorgio Graditi

    (ENEA-Italian National Agency for Energies, New Technologies and Sustainable Economic Development, 00196 Rome, Italy)

  • Maria Valenti

    (ENEA-Italian National Agency for Energies, New Technologies and Sustainable Economic Development, 00196 Rome, Italy)

Abstract

The decarbonization of the electricity grid is one of the actions that can help reduce fossil fuel emissions, and thus their impact on global warming in the future. This decarbonization will be achieved mainly through the integration and widespread diffusion of renewable power sources. This is also going to be supported by the shift from the paradigm of production–transmission–distribution, where electricity production oversees large-size power plants, to renewable-based distributed/diffused production, where electricity is generated very close or even by the same (group of) user(s) (or prosumers in the latter case). The number of mid-/small-size installations based on renewable energy technologies will therefore increase substantially, and the related renewable generation will be dominant against that from large-size power plants. Unfortunately, this will very likely reduce the reliability of the grid, unless appropriate countermeasures are taken/implemented, hopefully at the same time that the paradigm shift is being achieved. To this aim, it is important to identify the anomalies and main fault causes that might possibly affect some of the central renewable (wind, PV, hydrogen) and ancillary technologies that will be used to establish future renewable-based power systems. Accordingly, this paper presents a literature survey, also extending the focus to related datasets that can be used for deeper investigation. It is highlighted that the gaps mainly refer to a lack of a common taxonomy that prevents the establishment of structured knowledge in the scope of renewable-based power systems, a lack of contributions to anomalies/faults specific to wind turbines, and a lack of datasets related to electrolyzers, fuel cells, DC/x conversion, and monitoring and communication systems. Further, in the case of monitoring and communication systems, the scientific literature is both very dated, therefore not considering possible new aspects that would be currently worthy of investigation, and not oriented toward the particular domain addressed, thus considering peculiar aspects that are left out.

Suggested Citation

  • Valerio Mariani & Giovanna Adinolfi & Amedeo Buonanno & Roberto Ciavarella & Antonio Ricca & Vincenzo Sorrentino & Giorgio Graditi & Maria Valenti, 2024. "A Survey on Anomalies and Faults That May Impact the Reliability of Renewable-Based Power Systems," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6042-:d:1435634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6042/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6042/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neumayer, Martin & Stecher, Dominik & Grimm, Sebastian & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2023. "Fault and anomaly detection in district heating substations: A survey on methodology and data sets," Energy, Elsevier, vol. 276(C).
    2. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    3. Siracusano, Stefania & Baglio, Vincenzo & Van Dijk, Nicholas & Merlo, Luca & Aricò, Antonino Salvatore, 2017. "Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer," Applied Energy, Elsevier, vol. 192(C), pages 477-489.
    4. Bosong Zou & Lisheng Zhang & Xiaoqing Xue & Rui Tan & Pengchang Jiang & Bin Ma & Zehua Song & Wei Hua, 2023. "A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles," Energies, MDPI, vol. 16(14), pages 1-19, July.
    5. Renda, Simona & Ricca, Antonio & Palma, Vincenzo, 2020. "Precursor salts influence in Ruthenium catalysts for CO2 hydrogenation to methane," Applied Energy, Elsevier, vol. 279(C).
    6. Peter M. Attia & Aditya Grover & Norman Jin & Kristen A. Severson & Todor M. Markov & Yang-Hung Liao & Michael H. Chen & Bryan Cheong & Nicholas Perkins & Zi Yang & Patrick K. Herring & Muratahan Ayko, 2020. "Closed-loop optimization of fast-charging protocols for batteries with machine learning," Nature, Nature, vol. 578(7795), pages 397-402, February.
    7. Qingyu Luo & Tianyao Zheng & Wenjing Wu & Hongfei Jia & Jin Li, 2018. "Modeling the effect of bus stops on capacity of curb lane," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(03), pages 1-20, March.
    8. Panha, Karachakorn & Fowler, Michael & Yuan, Xiao-Zi & Wang, Haijiang, 2012. "Accelerated durability testing via reactants relative humidity cycling on PEM fuel cells," Applied Energy, Elsevier, vol. 93(C), pages 90-97.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zunyan & Xu, Liangfei & Huang, Yiyuan & Li, Jianqiu & Ouyang, Minggao & Du, Xiaoli & Jiang, Hongliang, 2018. "Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis," Applied Energy, Elsevier, vol. 212(C), pages 1321-1332.
    2. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    3. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    4. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    6. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    7. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    9. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    10. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Hsu, Chia-Wei & Xiong, Rui & Chen, Nan-Yow & Li, Ju & Tsou, Nien-Ti, 2022. "Deep neural network battery life and voltage prediction by using data of one cycle only," Applied Energy, Elsevier, vol. 306(PB).
    12. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    13. Wang, Tao & Huang, Li & Tian, Junfang & Zhang, Jing & Yuan, Zijian & Zheng, Jianfeng, 2024. "Bus dwell time estimation and overtaking maneuvers analysis: A stochastic process approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    14. Xingchen Yan & Tao Wang & Jun Chen & Xiaofei Ye & Zhen Yang & Hua Bai, 2019. "Analysis of the Characteristics and Number of Bicycle–Passenger Conflicts at Bus Stops for Improving Safety," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    15. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Mahfuzur Rahman & Solaiman Chowdhury & Mohammad Shorfuzzaman & Mohammad Kamal Hossain & Mohammad Hammoudeh, 2023. "Peer-to-Peer Power Energy Trading in Blockchain Using Efficient Machine Learning Model," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    17. Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & Zheng, Lijun & Gao, Xinyong & You, Shijun, 2023. "Difference analysis and recognition of hydraulic oscillation by two types of sudden faults on long-distance district heating pipeline," Energy, Elsevier, vol. 284(C).
    18. Pei, Pucheng & Jia, Xiaoning & Xu, Huachi & Li, Pengcheng & Wu, Ziyao & Li, Yuehua & Ren, Peng & Chen, Dongfang & Huang, Shangwei, 2018. "The recovery mechanism of proton exchange membrane fuel cell in micro-current operation," Applied Energy, Elsevier, vol. 226(C), pages 1-9.
    19. Fernández-Blanco, Ricardo & Morales, Juan Miguel & Pineda, Salvador, 2021. "Forecasting the price-response of a pool of buildings via homothetic inverse optimization," Applied Energy, Elsevier, vol. 290(C).
    20. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6042-:d:1435634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.