IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5604-d1426000.html
   My bibliography  Save this article

Rooftop PV Development Suitability and Carbon Benefits: An Anhui Province Case Study

Author

Listed:
  • Qianhao He

    (College of Resource and Environment, Anhui Agriculture University, Hefei 230036, China)

  • Xiaoxiao Luan

    (College of Resource and Environment, Anhui Agriculture University, Hefei 230036, China)

  • Jiayi Wang

    (College of Resource and Environment, Anhui Agriculture University, Hefei 230036, China)

  • Yuzhong Liu

    (College of Resource and Environment, Anhui Agriculture University, Hefei 230036, China)

  • Shuyun Yang

    (College of Resource and Environment, Anhui Agriculture University, Hefei 230036, China
    Hefei Agriculture Environmental Science Observation and Experiment Station, Ministry of Agriculture and Rural Affairs, Hefei 230036, China)

Abstract

As one of the most rapidly developing provinces in China in the past two decades, Anhui Province has seen an increasing demand for clean energy in recent years due to industrial transformation and the requirements of dual carbon targets. This paper opts to investigate roof-mounted distributed photovoltaics, which are more suitable for development in densely populated areas. Current research on distributed photovoltaics largely focuses on vague estimations of power generation potential, without adequately considering the specific development conditions of different regions. This paper starts from the actual situation affecting the development of roof-mounted distributed photovoltaics and selects a smaller number of factors that are more in line with reality for hierarchical analysis, constructing a relatively simple but practical evaluation system (“meteorological-geographical-socio-economic”). At the same time, this paper innovatively proposes different schemes for the full lifecycle power generation and emission reduction benefits of roof-mounted distributed photovoltaics and compares them, providing a foundation for subsequent in-depth research. Key findings include the following: The northern regions of Anhui Province exhibit higher suitability for rooftop distributed PV, with residential areas being the primary influencing factor, followed by solar radiation considerations; the annual power generation potential of rooftop distributed PV in Anhui Province constitutes around 80% of the total electricity consumption in 2021, but the potential is predominantly concentrated in rural areas, resulting in spatial disparities in power generation and consumption across the province; developing the rooftop distributed PV industry based on suitability can yield substantial power generation and emission reduction benefits, translating to an estimated reduction of approximately 1.28 × 10 8 tCO 2 annually, representing around one-third of Anhui Province’s carbon emissions in 2021.

Suggested Citation

  • Qianhao He & Xiaoxiao Luan & Jiayi Wang & Yuzhong Liu & Shuyun Yang, 2024. "Rooftop PV Development Suitability and Carbon Benefits: An Anhui Province Case Study," Sustainability, MDPI, vol. 16(13), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5604-:d:1426000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ko, Li & Wang, Jen-Chun & Chen, Chia-Yon & Tsai, Hsing-Yeh, 2015. "Evaluation of the development potential of rooftop solar photovoltaic in Taiwan," Renewable Energy, Elsevier, vol. 76(C), pages 582-595.
    2. Yang, Qing & Huang, Tianyue & Wang, Saige & Li, Jiashuo & Dai, Shaoqing & Wright, Sebastian & Wang, Yuxuan & Peng, Huaiwu, 2019. "A GIS-based high spatial resolution assessment of large-scale PV generation potential in China," Applied Energy, Elsevier, vol. 247(C), pages 254-269.
    3. Pasquale Marcello Falcone, 2023. "Sustainable Energy Policies in Developing Countries: A Review of Challenges and Opportunities," Energies, MDPI, vol. 16(18), pages 1-19, September.
    4. Nestor A. Sepulveda & Jesse D. Jenkins & Aurora Edington & Dharik S. Mallapragada & Richard K. Lester, 2021. "The design space for long-duration energy storage in decarbonized power systems," Nature Energy, Nature, vol. 6(5), pages 506-516, May.
    5. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Bo & Xiong, Siqin & Ma, Xiaoming & Liao, Xiawei, 2024. "Assessment of floating solar photovoltaic potential in China," Renewable Energy, Elsevier, vol. 220(C).
    2. Jiayu Bao & Xianglong Li & Tao Yu & Liangliang Jiang & Jialin Zhang & Fengjiao Song & Wenqiang Xu, 2024. "Are Regions Conducive to Photovoltaic Power Generation Demonstrating Significant Potential for Harnessing Solar Energy via Photovoltaic Systems?," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    3. Pedro Gomes da Cruz Filho & Danielle Devequi Gomes Nunes & Hayna Malta Santos & Alex Álisson Bandeira Santos & Bruna Aparecida Souza Machado, 2023. "From Patents to Progress: Genetic Algorithms in Harmonic Distortion Monitoring Technology," Energies, MDPI, vol. 16(24), pages 1-21, December.
    4. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Farah, Sleiman & Andresen, Gorm Bruun, 2024. "Investment-based optimisation of energy storage design parameters in a grid-connected hybrid renewable energy system," Applied Energy, Elsevier, vol. 355(C).
    7. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    8. Davis, Dominic & Brear, Michael J., 2024. "Impact of short-term wind forecast accuracy on the performance of decarbonising wholesale electricity markets," Energy Economics, Elsevier, vol. 130(C).
    9. Lukáš Rečka & Milan Ščasný & Dali Tsintskiladze Laxton, 2023. "The Role of Biomass in Decarbonisation Efforts: Spatially Enriched Energy System Optimisation Modelling," Energies, MDPI, vol. 16(21), pages 1-18, October.
    10. Cosgrove, Paul & Roulstone, Tony & Zachary, Stan, 2023. "Intermittency and periodicity in net-zero renewable energy systems with storage," Renewable Energy, Elsevier, vol. 212(C), pages 299-307.
    11. Risthaus, Kai & Linder, Marc & Schmidt, Matthias, 2022. "Experimental investigation of a novel mechanically fluidized bed reactor for thermochemical energy storage with calcium hydroxide/calcium oxide," Applied Energy, Elsevier, vol. 315(C).
    12. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    13. Yong, Qingqing & Jin, Kaiyuan & Li, Xiaobo & Yang, Ronggui, 2023. "Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant," Energy, Elsevier, vol. 280(C).
    14. Jung, Seunghoon & Jeoung, Jaewon & Kang, Hyuna & Hong, Taehoon, 2021. "Optimal planning of a rooftop PV system using GIS-based reinforcement learning," Applied Energy, Elsevier, vol. 298(C).
    15. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2022. "Efficiency of resilient three-part tariff pricing schemes in residential power markets," Energy, Elsevier, vol. 239(PD).
    16. Liu, Yang & Zhang, Yuchen & Zhao, Xiaoli & Farnoosh, Arash & Ma, Ruoran, 2024. "Synergistic effect of environmental governance instruments embedded in social contexts: A case study of China," Ecological Economics, Elsevier, vol. 220(C).
    17. Yifei Deng & Yijing Wang & Xiaofan Xing & Yuankang Xiong & Siqing Xu & Rong Wang, 2024. "Requirement on the Capacity of Energy Storage to Meet the 2 °C Goal," Sustainability, MDPI, vol. 16(9), pages 1-17, April.
    18. Gao, Jianwei & Wang, Yaping & Guo, Fengjia & Chen, Jiayi, 2024. "A two-stage decision framework for GIS-based site selection of wind-photovoltaic-hybrid energy storage project using LSGDM method," Renewable Energy, Elsevier, vol. 222(C).
    19. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    20. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5604-:d:1426000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.