IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p152-d1305923.html
   My bibliography  Save this article

Water Nutrient Management in Soilless Plant Cultivation versus Sustainability

Author

Listed:
  • Artur Mielcarek

    (Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-719 Olsztyn, Poland)

  • Karolina Kłobukowska

    (Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-719 Olsztyn, Poland)

  • Joanna Rodziewicz

    (Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-719 Olsztyn, Poland)

  • Wojciech Janczukowicz

    (Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-719 Olsztyn, Poland)

  • Kamil Łukasz Bryszewski

    (Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-719 Olsztyn, Poland)

Abstract

Under-cover soilless cultivation is an important technique of crop production. Due to the lack of contact with soil and precipitation, the root system of crops grown must be provided with water and all necessary nutrients in the form of a solution (nutrient medium). This nutrient medium needs to be fed in excess to ensure proper plant development and the expected qualitative and quantitative parameters of the crop yield, which means that in the case of, e.g., tomato cultivation, 20–80% of the supplied medium must be removed from the root system and managed. Uncontrolled discharge of this drainage water poses a significant threat to the environment, causing contamination of surface waters and groundwaters. The article presents the latest solutions for drainage water management as well as technologies and systems that allow saving water and fertilizers, and thus recovering elements. It also characterizes methods deployed for the treatment of overflow that enable its recirculation, its re-use for fertilization of other less demanding crops (including soil crops), and its final management in the form of a discharge to the natural environment. Due to depleting resources of adequate-quality water, increase in the prices of mineral fertilizers, and depletion of natural phosphorus deposits, the future trends in water and nutrients management in this cropping system aim at closing circuits of drainage water and recovering elements before their discharge into the natural environment. These measures are expected not only to protect the natural environment but also to reduce the costs of crop production.

Suggested Citation

  • Artur Mielcarek & Karolina Kłobukowska & Joanna Rodziewicz & Wojciech Janczukowicz & Kamil Łukasz Bryszewski, 2023. "Water Nutrient Management in Soilless Plant Cultivation versus Sustainability," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:152-:d:1305923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    2. Santos, Miguel G. & Moreira, Germano S. & Pereira, Ruth & Carvalho, Susana M.P., 2022. "Assessing the potential use of drainage from open soilless production systems: A case study from an agronomic and ecotoxicological perspective," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Massa, D. & Incrocci, L. & Maggini, R. & Carmassi, G. & Campiotti, C.A. & Pardossi, A., 2010. "Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 97(7), pages 971-980, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venezia, Accursio & Colla, Giuseppe & Di Cesare, Carlo & Stipic, Marija & Massa, Daniele, 2022. "The effect of different fertigation strategies on salinity and nutrient dynamics of cherry tomato grown in a gutter subirrigation system," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Massa, Daniele & Magán, Juan José & Montesano, Francesco Fabiano & Tzortzakis, Nikolaos, 2020. "Minimizing water and nutrient losses from soilless cropping in southern Europe," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Puccinelli, Martina & Carmassi, Giulia & Pardossi, Alberto & Incrocci, Luca, 2023. "Wild edible plant species grown hydroponically with crop drainage water in a Mediterranean climate: Crop yield, leaf quality, and use of water and nutrients," Agricultural Water Management, Elsevier, vol. 282(C).
    4. Carotti, Laura & Pistillo, Alessandro & Zauli, Ilaria & Meneghello, Davide & Martin, Michael & Pennisi, Giuseppina & Gianquinto, Giorgio & Orsini, Francesco, 2023. "Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation," Agricultural Water Management, Elsevier, vol. 285(C).
    5. Incrocci, Luca & Marzialetti, Paolo & Incrocci, Giorgio & Di Vita, Andrea & Balendonck, Jos & Bibbiani, Carlo & Spagnol, Serafino & Pardossi, Alberto, 2014. "Substrate water status and evapotranspiration irrigation scheduling in heterogenous container nursery crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 30-40.
    6. Tamimi, Mansoor Al & Green, Steve & Hammami, Zied & Ammar, Khalil & Ketbi, Mouza Al & Al-Shrouf, Ali M. & Dawoud, Mohamed & Kennedy, Lesley & Clothier, Brent, 2022. "Evapotranspiration and crop coefficients using lysimeter measurements for food crops in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 272(C).
    7. Monika Komorowska & Marcin Niemiec & Jakub Sikora & Zofia Gródek-Szostak & Hatice Gurgulu & Maciej Chowaniak & Atilgan Atilgan & Pavel Neuberger, 2023. "Evaluation of Sheep Wool as a Substrate for Hydroponic Cucumber Cultivation," Agriculture, MDPI, vol. 13(3), pages 1-14, February.
    8. Neocleous, Damianos & Savvas, Dimitrios, 2016. "NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake," Agricultural Water Management, Elsevier, vol. 165(C), pages 22-32.
    9. Wang, Jian & Li, Xin & Zhang, Zhenggui & Li, Xiaofei & Han, Yingchun & Feng, Lu & Yang, Beifang & Wang, Guoping & Lei, Yaping & Xiong, Shiwu & Xin, Minghua & Wang, Zhanbiao & Li, Yabing, 2022. "Application of image technology to simulate optimal frequency of automatic collection of volumetric soil water content data," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Li Yang & Haijun Liu & Shabtai Cohen & Zhuangzhuang Gao, 2022. "Microclimate and Plant Transpiration of Tomato ( Solanum lycopersicum L.) in a Sunken Solar Greenhouse in North China," Agriculture, MDPI, vol. 12(2), pages 1-21, February.
    11. Blok, Chris & Voogt, Wim & Barbagli, Tommaso, 2023. "Reducing nutrient imbalance in recirculating drainage solution of stone wool grown tomato," Agricultural Water Management, Elsevier, vol. 285(C).
    12. Anderson Fernando Wamser & Arthur Bernardes Cecilio Filho & Rodrigo Hiyoshi Dalmazzo Nowaki & Juan Waldir Mendoza-Cortez & Miguel Urrestarazu, 2017. "Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-14, July.
    13. Sara Sturiale & Oriana Gava & Marisa Gallardo & Dolores Buendía Guerrero & Dursun Buyuktas & Gulcin Ece Aslan & Asma Laarif & Thameur Bouslama & Alejandra Navarro & Luca Incrocci & Fabio Bartolini, 2024. "Environmental and Economic Performance of Greenhouse Cropping in the Mediterranean Basin: Lessons Learnt from a Cross-Country Comparison," Sustainability, MDPI, vol. 16(11), pages 1-20, May.
    14. Cedeño, J. & Magán, J.J. & Thompson, R.B. & Fernández, M.D. & Gallardo, M., 2023. "Reducing nutrient loss in drainage from tomato grown in free-draining substrate in greenhouses using dynamic nutrient management," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Dickson Mgangathweni Mazibuko & Hiroko Gono & Sarvesh Maskey & Hiromu Okazawa & Lameck Fiwa & Hidehiko Kikuno & Tetsu Sato, 2023. "The Sustainable Niche for Vegetable Production within the Contentious Sustainable Agriculture Discourse: Barriers, Opportunities and Future Approaches," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    16. Santos, Miguel G. & Moreira, Germano S. & Pereira, Ruth & Carvalho, Susana M.P., 2022. "Assessing the potential use of drainage from open soilless production systems: A case study from an agronomic and ecotoxicological perspective," Agricultural Water Management, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:152-:d:1305923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.