IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v273y2022ics037837742200453x.html
   My bibliography  Save this article

Assessing the potential use of drainage from open soilless production systems: A case study from an agronomic and ecotoxicological perspective

Author

Listed:
  • Santos, Miguel G.
  • Moreira, Germano S.
  • Pereira, Ruth
  • Carvalho, Susana M.P.

Abstract

Cascade cropping systems in soilless horticulture (where drainage collected from the main crop is used in fertigation of secondary crops) are potentially interesting for Mediterranean countries as they enhance water and nutrient use efficiency. However, their agronomic and long-term environmental impact has been poorly addressed. In this case study, lettuce grown hydroponically or in soil (previously exposed to drainage for five years) was fertigated, throughout the cultivation period, with a nutrient solution composed of 0, 25, 50 or 100 % of drainage (0D, 25D, 50D and 100D) mixed with a fresh nutrient solution. Plant performance analysis included growth parameters and leaf mineral composition. Drainage was analyzed for nutrients and Plant Protection Products (PPP) residues, and bioassays were performed exposing aquatic organisms (Raphidocelis subcapitata, Aliivibrio fischeri and Daphnia magna) to drainage and soil elutriate. When analyzing plant performance in both cultivation systems, a significant effect was only found at 100D in hydroponics, resulting in 41 % less leaf area, 20 % smaller head diameter and 43 % lower yield. Drainage analysis showed high nutrient content, presence of PPP residues (up to 6 substances, reaching 3.29 µg·L−1 in total) and revealed toxicity to D. magna (EC50 = 66.6 %). Moreover, soil elutriate presented toxicity to R. subcapitata (EC50 = 20.6 %) and to A. fischeri (EC50 = 14.9 %). This study demonstrates the potential of using relatively high drainage percentages (up to 50 %) from soilless cultivation systems if applied to hydroponically-grown secondary crops. However, attention should be paid to the use of cascade cropping systems when drainages are applied to fertigate soil-grown crops, as it may contribute to soil degradation and environmental pollution on a long run.

Suggested Citation

  • Santos, Miguel G. & Moreira, Germano S. & Pereira, Ruth & Carvalho, Susana M.P., 2022. "Assessing the potential use of drainage from open soilless production systems: A case study from an agronomic and ecotoxicological perspective," Agricultural Water Management, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s037837742200453x
    DOI: 10.1016/j.agwat.2022.107906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742200453X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Salm, Caroline & Voogt, Wim & Beerling, Ellen & van Ruijven, Jim & van Os, Erik, 2020. "Minimising emissions to water bodies from NW European greenhouses; with focus on Dutch vegetable cultivation," Agricultural Water Management, Elsevier, vol. 242(C).
    2. Alsanius, Beatrix W. & Bergstrand, Karl-Johan & Burleigh, Stephen & Gruyer, Nicolas & Rosberg, Anna Karin, 2013. "Persistence of fenhexamid in the nutrient solution of a closed cropping system," Agricultural Water Management, Elsevier, vol. 127(C), pages 25-30.
    3. Massa, D. & Incrocci, L. & Maggini, R. & Carmassi, G. & Campiotti, C.A. & Pardossi, A., 2010. "Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 97(7), pages 971-980, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puccinelli, Martina & Carmassi, Giulia & Pardossi, Alberto & Incrocci, Luca, 2023. "Wild edible plant species grown hydroponically with crop drainage water in a Mediterranean climate: Crop yield, leaf quality, and use of water and nutrients," Agricultural Water Management, Elsevier, vol. 282(C).
    2. Artur Mielcarek & Karolina Kłobukowska & Joanna Rodziewicz & Wojciech Janczukowicz & Kamil Łukasz Bryszewski, 2023. "Water Nutrient Management in Soilless Plant Cultivation versus Sustainability," Sustainability, MDPI, vol. 16(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Incrocci, Luca & Marzialetti, Paolo & Incrocci, Giorgio & Di Vita, Andrea & Balendonck, Jos & Bibbiani, Carlo & Spagnol, Serafino & Pardossi, Alberto, 2014. "Substrate water status and evapotranspiration irrigation scheduling in heterogenous container nursery crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 30-40.
    2. Venezia, Accursio & Colla, Giuseppe & Di Cesare, Carlo & Stipic, Marija & Massa, Daniele, 2022. "The effect of different fertigation strategies on salinity and nutrient dynamics of cherry tomato grown in a gutter subirrigation system," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Massa, Daniele & Magán, Juan José & Montesano, Francesco Fabiano & Tzortzakis, Nikolaos, 2020. "Minimizing water and nutrient losses from soilless cropping in southern Europe," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Neocleous, Damianos & Savvas, Dimitrios, 2016. "NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake," Agricultural Water Management, Elsevier, vol. 165(C), pages 22-32.
    5. Gallardo, Marisa & Elia, Antonio & Thompson, Rodney B., 2020. "Decision support systems and models for aiding irrigation and nutrient management of vegetable crops," Agricultural Water Management, Elsevier, vol. 240(C).
    6. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    7. Blok, Chris & Voogt, Wim & Barbagli, Tommaso, 2023. "Reducing nutrient imbalance in recirculating drainage solution of stone wool grown tomato," Agricultural Water Management, Elsevier, vol. 285(C).
    8. Anderson Fernando Wamser & Arthur Bernardes Cecilio Filho & Rodrigo Hiyoshi Dalmazzo Nowaki & Juan Waldir Mendoza-Cortez & Miguel Urrestarazu, 2017. "Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-14, July.
    9. Puccinelli, Martina & Carmassi, Giulia & Pardossi, Alberto & Incrocci, Luca, 2023. "Wild edible plant species grown hydroponically with crop drainage water in a Mediterranean climate: Crop yield, leaf quality, and use of water and nutrients," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Artur Mielcarek & Karolina Kłobukowska & Joanna Rodziewicz & Wojciech Janczukowicz & Kamil Łukasz Bryszewski, 2023. "Water Nutrient Management in Soilless Plant Cultivation versus Sustainability," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    11. Cedeño, J. & Magán, J.J. & Thompson, R.B. & Fernández, M.D. & Gallardo, M., 2023. "Reducing nutrient loss in drainage from tomato grown in free-draining substrate in greenhouses using dynamic nutrient management," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s037837742200453x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.