IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics0378377421006855.html
   My bibliography  Save this article

The effect of different fertigation strategies on salinity and nutrient dynamics of cherry tomato grown in a gutter subirrigation system

Author

Listed:
  • Venezia, Accursio
  • Colla, Giuseppe
  • Di Cesare, Carlo
  • Stipic, Marija
  • Massa, Daniele

Abstract

The advantages of subirrigation for water distribution uniformity, water-saving, and other crop performances have been well documented in previous works. However, in subirrigated crops, an accumulation of salts inevitably occurs in the top layer of the growing medium, which represents one of the main difficulties to prolong the recirculation of the nutrient solution. Such an accumulation strongly depends on nutrient and non-nutrient (e.g., saline ions) concentrations, irrigation scheduling and water volumes and fluxes in the system. Tomato cherry plants (Solanum lycopersicum L. cv. Shiren) were grown soilless in a gutter subirrigation (closed-loop) system, during the spring season, to evaluate nutrient dynamics and crop response to: i) the nutrient solution concentration (i.e., standard and 50% reduced concentration), ii) irrigation frequency (i.e., high or low frequency), iii) irrigation duration (i.e., long or short time duration), and iv) tank volume at the refill (i.e., high and low volume). The most important factor, which influenced the nutrient dynamics and electrical conductivity of the system, was the concentration of the nutrient solution, followed at distance by the other three. The recirculated solution with reduced concentration showed a fairly stable composition (ranging from 1.2 to 1.6 dS m−1 of the electrical conductivity in the worst factor combination) with the electrical conductivity of water extracts in the upper substrate layers below 2.0 dS m−1 and the ratio between recirculated solution and plant uptake concentration of about 1 for most of the elements. Marketable fruit yield was 48% higher with the reduced concentration solution and affected by irrigation scheduling and tank volume at refill. By adapting the composition of the recirculated nutrient solution, to the available water quality and plant needs, a gutter subirrigation closed system can be safely managed for a short-cycle spring tomato crop.

Suggested Citation

  • Venezia, Accursio & Colla, Giuseppe & Di Cesare, Carlo & Stipic, Marija & Massa, Daniele, 2022. "The effect of different fertigation strategies on salinity and nutrient dynamics of cherry tomato grown in a gutter subirrigation system," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006855
    DOI: 10.1016/j.agwat.2021.107408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rouphael, Youssef & Cardarelli, Mariateresa & Rea, Elvira & Battistelli, Alberto & Colla, Giuseppe, 2006. "Comparison of the subirrigation and drip-irrigation systems for greenhouse zucchini squash production using saline and non-saline nutrient solutions," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 99-117, April.
    2. Massa, D. & Incrocci, L. & Maggini, R. & Carmassi, G. & Campiotti, C.A. & Pardossi, A., 2010. "Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 97(7), pages 971-980, July.
    3. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    4. Massa, Daniele & Magán, Juan José & Montesano, Francesco Fabiano & Tzortzakis, Nikolaos, 2020. "Minimizing water and nutrient losses from soilless cropping in southern Europe," Agricultural Water Management, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vicente Serna-Escolano & Alicia Dobón-Suárez & María J. Giménez & Pedro J. Zapata & María Gutiérrez-Pozo, 2023. "Effect of Fertigation on the Physicochemical Quality and Antioxidant System of ‘Fino’ Lemons during Postharvest Storage," Agriculture, MDPI, vol. 13(4), pages 1-10, March.
    2. Cedeño, J. & Magán, J.J. & Thompson, R.B. & Fernández, M.D. & Gallardo, M., 2023. "Reducing nutrient loss in drainage from tomato grown in free-draining substrate in greenhouses using dynamic nutrient management," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massa, Daniele & Magán, Juan José & Montesano, Francesco Fabiano & Tzortzakis, Nikolaos, 2020. "Minimizing water and nutrient losses from soilless cropping in southern Europe," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Puccinelli, Martina & Carmassi, Giulia & Pardossi, Alberto & Incrocci, Luca, 2023. "Wild edible plant species grown hydroponically with crop drainage water in a Mediterranean climate: Crop yield, leaf quality, and use of water and nutrients," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Artur Mielcarek & Karolina Kłobukowska & Joanna Rodziewicz & Wojciech Janczukowicz & Kamil Łukasz Bryszewski, 2023. "Water Nutrient Management in Soilless Plant Cultivation versus Sustainability," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    4. Cedeño, J. & Magán, J.J. & Thompson, R.B. & Fernández, M.D. & Gallardo, M., 2023. "Reducing nutrient loss in drainage from tomato grown in free-draining substrate in greenhouses using dynamic nutrient management," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Zambon, Flavia Tabay & Meadows, Taylor D. & Eckman, Megan A. & Rodriguez, Katya Michelle Rivera & Ferrarezi, Rhuanito Soranz, 2022. "Automated ebb-and-flow subirrigation accelerates citrus liner production in treepots," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Erika Kurucz & Gabriella Antal & Ida Kincses & Marianna Sipos & Miklós Gábor Fári & Imre J. Holb, 2023. "Effect of Light Treatment and Maturity Stage on Biomass Production and Bioactive Compounds of Two Pepper Cultivars under a Deep Water Culture Hydroponic System," Sustainability, MDPI, vol. 15(17), pages 1-20, September.
    7. Ankita Chopra & Prakash Rao & Om Prakash, 2024. "Biochar-enhanced soilless farming: a sustainable solution for modern agriculture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(7), pages 1-21, October.
    8. Carotti, Laura & Pistillo, Alessandro & Zauli, Ilaria & Meneghello, Davide & Martin, Michael & Pennisi, Giuseppina & Gianquinto, Giorgio & Orsini, Francesco, 2023. "Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation," Agricultural Water Management, Elsevier, vol. 285(C).
    9. Incrocci, Luca & Marzialetti, Paolo & Incrocci, Giorgio & Di Vita, Andrea & Balendonck, Jos & Bibbiani, Carlo & Spagnol, Serafino & Pardossi, Alberto, 2014. "Substrate water status and evapotranspiration irrigation scheduling in heterogenous container nursery crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 30-40.
    10. Mar Carreras-Sempere & Rafaela Caceres & Marc Viñas & Carmen Biel, 2021. "Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato ( Lycopersicum esculentum ) Production for boosting Circular and Sustainable Horticulture," Agriculture, MDPI, vol. 11(11), pages 1-15, October.
    11. Tamimi, Mansoor Al & Green, Steve & Hammami, Zied & Ammar, Khalil & Ketbi, Mouza Al & Al-Shrouf, Ali M. & Dawoud, Mohamed & Kennedy, Lesley & Clothier, Brent, 2022. "Evapotranspiration and crop coefficients using lysimeter measurements for food crops in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 272(C).
    12. Monika Komorowska & Marcin Niemiec & Jakub Sikora & Zofia Gródek-Szostak & Hatice Gurgulu & Maciej Chowaniak & Atilgan Atilgan & Pavel Neuberger, 2023. "Evaluation of Sheep Wool as a Substrate for Hydroponic Cucumber Cultivation," Agriculture, MDPI, vol. 13(3), pages 1-14, February.
    13. Ferrarezi, Rhuanito Soranz & Testezlaf, Roberto, 2017. "Automated ebb-and-flow subirrigation for citrus liners production. I. Plant growth," Agricultural Water Management, Elsevier, vol. 192(C), pages 45-57.
    14. Neocleous, Damianos & Savvas, Dimitrios, 2016. "NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake," Agricultural Water Management, Elsevier, vol. 165(C), pages 22-32.
    15. Savvas, D. & Stamati, E. & Tsirogiannis, I.L. & Mantzos, N. & Barouchas, P.E. & Katsoulas, N. & Kittas, C., 2007. "Interactions between salinity and irrigation frequency in greenhouse pepper grown in closed-cycle hydroponic systems," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 102-111, July.
    16. Savvas, Dimitrios & Giannothanasis, Evangelos & Ntanasi, Theodora & Karavidas, Ioannis & Drakatos, Stefanos & Panagiotakis, Ioannis & Neocleous, Damianos & Ntatsi, Georgia, 2023. "Improvement and validation of a decision support system to maintain optimal nutrient levels in crops grown in closed-loop soilless systems," Agricultural Water Management, Elsevier, vol. 285(C).
    17. Wang, Jian & Li, Xin & Zhang, Zhenggui & Li, Xiaofei & Han, Yingchun & Feng, Lu & Yang, Beifang & Wang, Guoping & Lei, Yaping & Xiong, Shiwu & Xin, Minghua & Wang, Zhanbiao & Li, Yabing, 2022. "Application of image technology to simulate optimal frequency of automatic collection of volumetric soil water content data," Agricultural Water Management, Elsevier, vol. 269(C).
    18. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    19. Li Yang & Haijun Liu & Shabtai Cohen & Zhuangzhuang Gao, 2022. "Microclimate and Plant Transpiration of Tomato ( Solanum lycopersicum L.) in a Sunken Solar Greenhouse in North China," Agriculture, MDPI, vol. 12(2), pages 1-21, February.
    20. Blok, Chris & Voogt, Wim & Barbagli, Tommaso, 2023. "Reducing nutrient imbalance in recirculating drainage solution of stone wool grown tomato," Agricultural Water Management, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.