IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5873-d1109593.html
   My bibliography  Save this article

Remediation of Micro-Pollution in an Alkaline Washing Solution of Fly Ash Using Simulated Exhaust Gas: Parameters and Mechanism

Author

Listed:
  • Lei Wang

    (School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
    These authors contributed equally to this work.)

  • Yuemei Tang

    (School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
    State Environmental Protection Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
    These authors contributed equally to this work.)

  • Yu Gong

    (State Environmental Protection Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China)

  • Xiang Shao

    (State Environmental Protection Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China)

  • Xiaochen Lin

    (State Environmental Protection Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China)

  • Weili Xu

    (State Environmental Protection Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China)

  • Yifan Zhu

    (State Environmental Protection Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China)

  • Yongming Ju

    (State Environmental Protection Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
    The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, China)

  • Lili Shi

    (State Environmental Protection Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China)

  • Dorota Kołodyńska

    (Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland)

Abstract

Currently, there is an urgent need to remediate heavy metals (HMs) and high alkalinity in the washing solution of fly ash (FA). This study investigated the remediation with simulated exhaust gases of two CO 2 partial pressure and revealed the removal efficiency of target pollutants, mainly including Pb ions. The results verify that under the preferred conditions of 25 °C and 15 mL/min flow rate, bubbling two kinds of simulated flue gases could efficiently remove 97.9–99.2% of Pb ions. Moreover, the initial 40 min removal of Pb ions fits in a way with a pseudo-first-order equation. Based on the thermodynamic parameters, we infer that the removal of Pb ions was a spontaneous, exothermic, and entropy-decreasing process. Furthermore, residual HMs and terminal pH after remediation of the FA washing solution basically met the regulatory threshold values of the integrated wastewater discharge standard in China (GB 8978−1996). Additionally, the particles obtained from the washing solution of FA were identified as CaCO 3 , which was mainly composed of vaterite and calcite crystalline. This study provides a fundamental guide for remediating multiple pollutants in the washing solution of FA and simultaneously sequestrating carbon emissions from power plants and industries.

Suggested Citation

  • Lei Wang & Yuemei Tang & Yu Gong & Xiang Shao & Xiaochen Lin & Weili Xu & Yifan Zhu & Yongming Ju & Lili Shi & Dorota Kołodyńska, 2023. "Remediation of Micro-Pollution in an Alkaline Washing Solution of Fly Ash Using Simulated Exhaust Gas: Parameters and Mechanism," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5873-:d:1109593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kodama, Satoshi & Nishimoto, Taiki & Yamamoto, Naoki & Yogo, Katsunori & Yamada, Koichi, 2008. "Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution," Energy, Elsevier, vol. 33(5), pages 776-784.
    2. Han, Sang-Jun & Im, Hye Jin & Wee, Jung-Ho, 2015. "Leaching and indirect mineral carbonation performance of coal fly ash-water solution system," Applied Energy, Elsevier, vol. 142(C), pages 274-282.
    3. Zdeb, Janusz & Howaniec, Natalia & Smoliński, Adam, 2023. "Experimental study on combined valorization of bituminous coal derived fluidized bed fly ash and carbon dioxide from energy sector," Energy, Elsevier, vol. 265(C).
    4. Eloneva, Sanni & Teir, Sebastian & Salminen, Justin & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2008. "Fixation of CO2 by carbonating calcium derived from blast furnace slag," Energy, Elsevier, vol. 33(9), pages 1461-1467.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    2. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    3. Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
    4. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    5. Giulia Costa & Alessandra Polettini & Raffaella Pomi & Alessio Stramazzo & Daniela Zingaretti, 2017. "Energetic assessment of CO 2 sequestration through slurry carbonation of steel slag: a factorial study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(3), pages 530-541, June.
    6. Eloneva, Sanni & Said, Arshe & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2012. "Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate," Applied Energy, Elsevier, vol. 90(1), pages 329-334.
    7. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    8. Yafei Zhao & Ken-ichi Itakura, 2023. "A State-of-the-Art Review on Technology for Carbon Utilization and Storage," Energies, MDPI, vol. 16(10), pages 1-22, May.
    9. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
    10. Jo, Hoyong & Lee, Min-Gu & Park, Jinwon & Jung, Kwang-Deog, 2017. "Preparation of high-purity nano-CaCO3 from steel slag," Energy, Elsevier, vol. 120(C), pages 884-894.
    11. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    12. Zhang, Huining & Gao, Chong & Chen, Ben & Tang, Jiang & He, Dongfeng & Xu, Anjun, 2018. "Stainless steel tailings accelerated direct carbonation process at low pressure: Carbonation efficiency evaluation and chromium leaching inhibition correlation analysis," Energy, Elsevier, vol. 155(C), pages 772-781.
    13. Chu, Guanrun & Li, Chun & Liu, Weizao & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Wang, Ye & Luo, Dongmei, 2019. "Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process," Energy, Elsevier, vol. 166(C), pages 1314-1322.
    14. Zdeb, Janusz & Howaniec, Natalia & Smoliński, Adam, 2023. "Experimental study on combined valorization of bituminous coal derived fluidized bed fly ash and carbon dioxide from energy sector," Energy, Elsevier, vol. 265(C).
    15. Nikolaos Koukouzas & Marina Christopoulou & Panagiota P. Giannakopoulou & Aikaterini Rogkala & Eleni Gianni & Christos Karkalis & Konstantina Pyrgaki & Pavlos Krassakis & Petros Koutsovitis & Dionisio, 2022. "Current CO 2 Capture and Storage Trends in Europe in a View of Social Knowledge and Acceptance. A Short Review," Energies, MDPI, vol. 15(15), pages 1-30, August.
    16. Xie, Heping & Gao, Xiaolin & Liu, Tao & Chen, Bin & Wu, Yifan & Jiang, Wenchuan, 2020. "Electricity generation by a novel CO2 mineralization cell based on organic proton-coupled electron transfer," Applied Energy, Elsevier, vol. 261(C).
    17. Smoliński, Adam & Howaniec, Natalia, 2023. "Experimental investigation and chemometric analysis of gasification and co-gasification of olive pomace and Sida Hermaphrodita blends with sewage sludge to hydrogen-rich gas," Energy, Elsevier, vol. 284(C).
    18. Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.
    19. Noor Allesya Alis Ramli & Faradiella Mohd Kusin & Verma Loretta M. Molahid, 2021. "Influencing Factors of the Mineral Carbonation Process of Iron Ore Mining Waste in Sequestering Atmospheric Carbon Dioxide," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    20. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5873-:d:1109593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.