IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5667-d1105767.html
   My bibliography  Save this article

A New Hybrid White Shark and Whale Optimization Approach for Estimating the Li-Ion Battery Model Parameters

Author

Listed:
  • Ahmed Fathy

    (Department of Electrical Engineering, Faculty of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

  • Dalia Yousri

    (Electrical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum 63514, Egypt)

  • Abdullah G. Alharbi

    (Department of Electrical Engineering, Faculty of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

  • Mohammad Ali Abdelkareem

    (Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
    Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
    Chemical Engineering Department, Minia University, Elminia 61111, Egypt)

Abstract

Constructing a reliable equivalent circuit of Li-Ion batteries using real operating conditions by estimating optimal parameters is mandatory for many engineering applications, as it controls the energy management of the battery in a hybrid system. However, model parameters can vary according to the electrochemical nature of the battery, so improving the accuracy of the battery model parameters is essential to obtain reliable and accurate equivalent circuits. Therefore, this paper proposes a new efficient hybrid optimization approach for determining the proper parameters of Li-ion battery Shepherd model equivalent circuits. The proposed algorithm comprises a white shark optimizer (WSO) and the whale optimization approach (WOA) for modifying the stochastic behavior of the WSO while searching for food sources. Minimizing the root mean square error between the estimated and measured battery voltages is the objective function considered in this work. The hybrid variant of the WSO (HWSO) was examined with two different types of batteries. Moreover, the proposed HWSO was validated versus a set of recent meta-heuristic approaches including the sea horse optimizer (SHO), artificial gorilla troops optimizer (GTO), coyote optimization algorithm (COA), and the basic version of the WSO. Furthermore, statistical analyses, mean convergence, and fitting curves were conducted for the comparisons. The proposed HWSO succeeded in achieving the least fitness values of 2.6172 × 10 −4 and 5.6118 × 10 −5 with standard deviations of 9.3861 × 10 −5 and 3.2854 × 10 −4 for battery 1 and battery 2, respectively. On the other hand, the worst fitness values were 6.5230 × 10 −2 and 6.6197 × 10 −5 via SHO and WSO for both considered batteries. The proposed HWSO results prove the efficiency of the proposed approach in providing highly accurate battery model parameters with high consistency and a unique convergence curve compared to the other methods.

Suggested Citation

  • Ahmed Fathy & Dalia Yousri & Abdullah G. Alharbi & Mohammad Ali Abdelkareem, 2023. "A New Hybrid White Shark and Whale Optimization Approach for Estimating the Li-Ion Battery Model Parameters," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5667-:d:1105767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simone Barcellona & Luigi Piegari, 2017. "Lithium Ion Battery Models and Parameter Identification Techniques," Energies, MDPI, vol. 10(12), pages 1-24, December.
    2. Hu, Minghui & Li, Yunxiao & Li, Shuxian & Fu, Chunyun & Qin, Datong & Li, Zonghua, 2018. "Lithium-ion battery modeling and parameter identification based on fractional theory," Energy, Elsevier, vol. 165(PB), pages 153-163.
    3. Wenxian Duan & Chuanxue Song & Yuan Chen & Feng Xiao & Silun Peng & Yulong Shao & Shixin Song, 2020. "Online Parameter Identification and State of Charge Estimation of Battery Based on Multitimescale Adaptive Double Kalman Filter Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-20, December.
    4. Dai, Haifeng & Xu, Tianjiao & Zhu, Letao & Wei, Xuezhe & Sun, Zechang, 2016. "Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales," Applied Energy, Elsevier, vol. 184(C), pages 119-131.
    5. Song, Ziyou & Hofmann, Heath & Lin, Xinfan & Han, Xuebing & Hou, Jun, 2018. "Parameter identification of lithium-ion battery pack for different applications based on Cramer-Rao bound analysis and experimental study," Applied Energy, Elsevier, vol. 231(C), pages 1307-1318.
    6. Kim, Minho & Chun, Huiyong & Kim, Jungsoo & Kim, Kwangrae & Yu, Jungwook & Kim, Taegyun & Han, Soohee, 2019. "Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Lepe-Silva & Broderick Crawford & Felipe Cisternas-Caneo & José Barrera-Garcia & Ricardo Soto, 2024. "A Binary Chaotic White Shark Optimizer," Mathematics, MDPI, vol. 12(20), pages 1-35, October.
    2. Isen, Evren & Duman, Serhat, 2024. "Improved stochastic fractal search algorithm involving design operators for solving parameter extraction problems in real-world engineering optimization problems," Applied Energy, Elsevier, vol. 365(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    2. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Peng Guo & Xiaobo Wu & António M. Lopes & Anyu Cheng & Yang Xu & Liping Chen, 2022. "Parameter Identification for Lithium-Ion Battery Based on Hybrid Genetic–Fractional Beetle Swarm Optimization Method," Mathematics, MDPI, vol. 10(17), pages 1-11, August.
    4. Angeles Cabañero, Maria & Altmann, Johannes & Gold, Lukas & Boaretto, Nicola & Müller, Jana & Hein, Simon & Zausch, Jochen & Kallo, Josef & Latz, Arnulf, 2019. "Investigation of the temperature dependence of lithium plating onset conditions in commercial Li-ion batteries," Energy, Elsevier, vol. 171(C), pages 1217-1228.
    5. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    6. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    7. Yixin Liu & Ao Lei & Chunyang Yu & Tengfei Huang & Yuanbin Yu, 2024. "An Improved Collaborative Estimation Method for Determining The SOC and SOH of Lithium-Ion Power Batteries for Electric Vehicles," Energies, MDPI, vol. 17(13), pages 1-22, July.
    8. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    10. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.
    12. Yongcun Fan & Haotian Shi & Shunli Wang & Carlos Fernandez & Wen Cao & Junhan Huang, 2021. "A Novel Adaptive Function—Dual Kalman Filtering Strategy for Online Battery Model Parameters and State of Charge Co-Estimation," Energies, MDPI, vol. 14(8), pages 1-18, April.
    13. Lai, Qingzhi & Ahn, Hyoung Jun & Kim, YoungJin & Kim, You Na & Lin, Xinfan, 2021. "New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery," Applied Energy, Elsevier, vol. 295(C).
    14. Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    15. He, Xitian & Sun, Bingxiang & Zhang, Weige & Fan, Xinyuan & Su, Xiaojia & Ruan, Haijun, 2022. "Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery," Energy, Elsevier, vol. 244(PB).
    16. Ouyang, Tiancheng & Xu, Peihang & Chen, Jingxian & Su, Zixiang & Huang, Guicong & Chen, Nan, 2021. "A novel state of charge estimation method for lithium-ion batteries based on bias compensation," Energy, Elsevier, vol. 226(C).
    17. Nicola Campagna & Vincenzo Castiglia & Rosario Miceli & Rosa Anna Mastromauro & Ciro Spataro & Marco Trapanese & Fabio Viola, 2020. "Battery Models for Battery Powered Applications: A Comparative Study," Energies, MDPI, vol. 13(16), pages 1-26, August.
    18. Hamed Jafari Kaleybar & Morris Brenna & Huan Li & Dario Zaninelli, 2022. "Fuel Cell Hybrid Locomotive with Modified Fuzzy Logic Based Energy Management System," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    19. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    20. Hatherall, Ollie & Barai, Anup & Niri, Mona Faraji & Wang, Zeyuan & Marco, James, 2024. "Novel battery power capability assessment for improved eVTOL aircraft landing," Applied Energy, Elsevier, vol. 361(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5667-:d:1105767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.