IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i20p3171-d1495898.html
   My bibliography  Save this article

A Binary Chaotic White Shark Optimizer

Author

Listed:
  • Fernando Lepe-Silva

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Broderick Crawford

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Felipe Cisternas-Caneo

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • José Barrera-Garcia

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Ricardo Soto

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

Abstract

This research presents a novel hybrid approach, which combines the White Shark Optimizer (WSO) metaheuristic algorithm with chaotic maps integrated into the binarization process. Inspired by the predatory behavior of white sharks, WSO has shown great potential to navigate complex search spaces for optimization tasks. On the other hand, chaotic maps are nonlinear dynamical systems that generate pseudo-random sequences, allowing for better solution diversification and avoiding local optima. By hybridizing WSO and chaotic maps through adaptive binarization rules, the complementary strengths of both approaches are leveraged to obtain high-quality solutions. We have solved the Set Covering Problem (SCP), a well-known NP-hard combinatorial optimization challenge with real-world applications in several domains, and experimental results indicate that LOG and TENT chaotic maps are better after statistical testing. This hybrid approach could have practical applications in telecommunication network optimization, transportation route planning, and resource-constrained allocation.

Suggested Citation

  • Fernando Lepe-Silva & Broderick Crawford & Felipe Cisternas-Caneo & José Barrera-Garcia & Ricardo Soto, 2024. "A Binary Chaotic White Shark Optimizer," Mathematics, MDPI, vol. 12(20), pages 1-35, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3171-:d:1495898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/20/3171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/20/3171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Y.C. Ho & D.L. Pepyne, 2002. "Simple Explanation of the No-Free-Lunch Theorem and Its Implications," Journal of Optimization Theory and Applications, Springer, vol. 115(3), pages 549-570, December.
    2. Ahmed Fathy & Abdulmohsen Alanazi, 2023. "An Efficient White Shark Optimizer for Enhancing the Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    3. Ahmed Fathy & Dalia Yousri & Abdullah G. Alharbi & Mohammad Ali Abdelkareem, 2023. "A New Hybrid White Shark and Whale Optimization Approach for Estimating the Li-Ion Battery Model Parameters," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    4. Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
    5. Broderick Crawford & Ricardo Soto & Eric Monfroy & Carlos Castro & Wenceslao Palma & Fernando Paredes, 2013. "A Hybrid Soft Computing Approach for Subset Problems," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-12, July.
    6. Alberto Caprara & Paolo Toth & Matteo Fischetti, 2000. "Algorithms for the Set Covering Problem," Annals of Operations Research, Springer, vol. 98(1), pages 353-371, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coslovich, Luca & Pesenti, Raffaele & Ukovich, Walter, 2006. "Minimizing fleet operating costs for a container transportation company," European Journal of Operational Research, Elsevier, vol. 171(3), pages 776-786, June.
    2. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    3. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    4. Patrizia Beraldi & Andrzej Ruszczyński, 2002. "The Probabilistic Set-Covering Problem," Operations Research, INFORMS, vol. 50(6), pages 956-967, December.
    5. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    6. Nguyen, Tri-Dung, 2014. "A fast approximation algorithm for solving the complete set packing problem," European Journal of Operational Research, Elsevier, vol. 237(1), pages 62-70.
    7. Jans, Raf & Degraeve, Zeger, 2008. "A note on a symmetrical set covering problem: The lottery problem," European Journal of Operational Research, Elsevier, vol. 186(1), pages 104-110, April.
    8. Dimitris Bertsimas & Dan A. Iancu & Dmitriy Katz, 2013. "A New Local Search Algorithm for Binary Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 208-221, May.
    9. Naji-Azimi, Zahra & Toth, Paolo & Galli, Laura, 2010. "An electromagnetism metaheuristic for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 205(2), pages 290-300, September.
    10. Marianov, Vladimir & Eiselt, H.A., 2024. "Fifty Years of Location Theory - A Selective Review," European Journal of Operational Research, Elsevier, vol. 318(3), pages 701-718.
    11. Gao, Chao & Yao, Xin & Weise, Thomas & Li, Jinlong, 2015. "An efficient local search heuristic with row weighting for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 750-761.
    12. Jordi Pereira & Igor Averbakh, 2013. "The Robust Set Covering Problem with interval data," Annals of Operations Research, Springer, vol. 207(1), pages 217-235, August.
    13. Youngho Lee & Hanif D. Sherali & Ikhyun Kwon & Seongin Kim, 2006. "A new reformulation approach for the generalized partial covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(2), pages 170-179, March.
    14. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    15. Xilong Lin & Yisen Niu & Zixuan Yan & Lianglin Zou & Ping Tang & Jifeng Song, 2024. "Hybrid Photovoltaic Output Forecasting Model with Temporal Convolutional Network Using Maximal Information Coefficient and White Shark Optimizer," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    16. Rita Portugal & Helena Ramalhinho-Lourenço & José P. Paixao, 2006. "Driver scheduling problem modelling," Economics Working Papers 991, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Helena R. Lourenço & José P. Paixão & Rita Portugal, 2001. "Multiobjective Metaheuristics for the Bus Driver Scheduling Problem," Transportation Science, INFORMS, vol. 35(3), pages 331-343, August.
    18. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    20. İbrahim Muter & Ş. İlker Birbil & Güvenç Şahin, 2010. "Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 603-619, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3171-:d:1495898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.