IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v126y2019icp139-168.html
   My bibliography  Save this article

Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles

Author

Listed:
  • Wang, Jian
  • Peeta, Srinivas
  • He, Xiaozheng

Abstract

Compared to existing human-driven vehicles (HDVs), connected and autonomous vehicles (CAVs) offer users the potential for reduced value of time, enhanced quality of travel experience, and seamless situational awareness and connectivity. Hence, CAV users can differ in their route choice behavior compared to HDV users, leading to mixed traffic flows that can significantly deviate from the single-class HDV traffic pattern. However, due to the lack of quantitative models, there is limited knowledge on the evolution of mixed traffic flows in a traffic network. To partly bridge this gap, this study proposes a multiclass traffic assignment model, where HDV users and CAV users follow different route choice principles, characterized by the cross-nested logit (CNL) model and user equilibrium (UE) model, respectively. The CNL model captures HDV users’ uncertainty associated with limited knowledge of traffic conditions while overcoming the route overlap issue of logit-based stochastic user equilibrium. The UE model characterizes the CAV's capability for acquiring accurate information on traffic conditions. In addition, the multiclass model can capture the characteristics of mixed traffic flow such as the difference in value of time between HDVs and CAVs and the asymmetry in their driving interactions, thereby enhancing behavioral realism in the modeling. The study develops a new solution algorithm labeled RSRS-MSRA, in which a route-swapping based strategy is embedded with a self-regulated step size choice technique, to solve the proposed model efficiently. Sensitivity analysis of the proposed model is performed to gain insights into the effects of perturbations on the mixed traffic equilibrium, which facilitates the estimation of equilibrium traffic flow and identification of critical elements under expected or unexpected events. The study results can assist transportation decision-makers to design effective planning and operational strategies to leverage the advantages of CAVs and manage traffic congestion under mixed traffic flows.

Suggested Citation

  • Wang, Jian & Peeta, Srinivas & He, Xiaozheng, 2019. "Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 139-168.
  • Handle: RePEc:eee:transb:v:126:y:2019:i:c:p:139-168
    DOI: 10.1016/j.trb.2019.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518309512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terry L. Friesz & David Bernstein & Nihal J. Mehta & Roger L. Tobin & Saiid Ganjalizadeh, 1994. "Day-To-Day Dynamic Network Disequilibria and Idealized Traveler Information Systems," Operations Research, INFORMS, vol. 42(6), pages 1120-1136, December.
    2. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Un, Puikei & Zhou, Yu & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, Elsevier, vol. 69(C), pages 247-257.
    3. Huang, Hai-Jun & Lam, William H. K., 2002. "Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 253-273, March.
    4. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    5. Nagurney, Anna & Dong, June, 2002. "A multiclass, multicriteria traffic network equilibrium model with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 445-469, June.
    6. van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.
    7. Azevedo, JoseAugusto & Santos Costa, Maria Emilia O. & Silvestre Madeira, Joaquim Joao E. R. & Vieira Martins, Ernesto Q., 1993. "An algorithm for the ranking of shortest paths," European Journal of Operational Research, Elsevier, vol. 69(1), pages 97-106, August.
    8. Jafari, Ehsan & Boyles, Stephen D., 2016. "Improved bush-based methods for network contraction," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 298-313.
    9. Michael Florian, 1977. "A Traffic Equilibrium Model of Travel by Car and Public Transit Modes," Transportation Science, INFORMS, vol. 11(2), pages 166-179, May.
    10. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    11. Wang, Jian & He, Xiaozheng & Peeta, Srinivas, 2016. "Sensitivity analysis based approximation models for day-to-day link flow evolution process," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 35-53.
    12. Watling, David P., 2016. "A route-swapping dynamical system and Lyapunov function for stochastic user equilibriumAuthor-Name: Smith, Michael J," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 132-141.
    13. Gitakrishnan Ramadurai & Satish Ukkusuri, 2010. "Dynamic User Equilibrium Model for Combined Activity-Travel Choices Using Activity-Travel Supernetwork Representation," Networks and Spatial Economics, Springer, vol. 10(2), pages 273-292, June.
    14. Vincent A.C. van den Berg & Erik T. Verhoef, 2015. "Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity," Tinbergen Institute Discussion Papers 15-062/VIII, Tinbergen Institute, revised 11 Jul 2016.
    15. Henry Liu & Xiaozheng He & Bingsheng He, 2009. "Method of Successive Weighted Averages (MSWA) and Self-Regulated Averaging Schemes for Solving Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 9(4), pages 485-503, December.
    16. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    17. Huang, Hai-Jun & Li, Zhi-Chun, 2007. "A multiclass, multicriteria logit-based traffic equilibrium assignment model under ATIS," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1464-1477, February.
    18. Roger L. Tobin & Terry L. Friesz, 1988. "Sensitivity Analysis for Equilibrium Network Flow," Transportation Science, INFORMS, vol. 22(4), pages 242-250, November.
    19. Yang, Hai & Huang, Hai-Jun, 2004. "The multi-class, multi-criteria traffic network equilibrium and systems optimum problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 1-15, January.
    20. Byung-Wook Wie & Roger L. Tobin & Terry L. Friesz & David Bernstein, 1995. "A Discrete Time, Nested Cost Operator Approach to the Dynamic Network User Equilibrium Problem," Transportation Science, INFORMS, vol. 29(1), pages 79-92, February.
    21. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    22. Marzano, Vittorio & Papola, Andrea, 2008. "On the covariance structure of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 83-98, February.
    23. Stella C. Dafermos, 1972. "The Traffic Assignment Problem for Multiclass-User Transportation Networks," Transportation Science, INFORMS, vol. 6(1), pages 73-87, February.
    24. Hu Shao & William Lam & Mei Tam, 2006. "A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes under Uncertainty in Demand," Networks and Spatial Economics, Springer, vol. 6(3), pages 173-204, September.
    25. Yang, Hai, 1997. "Sensitivity analysis for the elastic-demand network equilibrium problem with applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 55-70, February.
    26. Chen, Zhibin & He, Fang & Yin, Yafeng & Du, Yuchuan, 2017. "Optimal design of autonomous vehicle zones in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 44-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    2. Zhang, Fang & Lu, Jian & Hu, Xiaojian, 2022. "Integrated path controlling and subsidy scheme for mobility and environmental management in automated transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    3. Wei Nai & Zan Yang & Dan Li & Lu Liu & Yuting Fu & Yuao Guo, 2024. "Urban Day-to-Day Travel and Its Development in an Information Environment: A Review," Sustainability, MDPI, vol. 16(6), pages 1-29, March.
    4. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    5. Qi Zhong & Lixin Miao, 2024. "Reliability-Based Mixed Traffic Equilibrium Problem Under Endogenous Market Penetration of Connected Autonomous Vehicles and Uncertainty in Supply," Networks and Spatial Economics, Springer, vol. 24(2), pages 461-505, June.
    6. Jian Wang & Muqing Du & Lili Lu & Xiaozheng He, 2018. "Maximizing Network Throughput under Stochastic User Equilibrium with Elastic Demand," Networks and Spatial Economics, Springer, vol. 18(1), pages 115-143, March.
    7. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    8. Bahrami, Sina & Roorda, Matthew J., 2020. "Optimal traffic management policies for mixed human and automated traffic flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 130-143.
    9. Farokhi, Farhad & Johansson, Karl H., 2015. "A piecewise-constant congestion taxing policy for repeated routing games," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 123-143.
    10. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    11. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    12. Talebian, Ahmadreza & Mishra, Sabyasachee, 2022. "Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    13. Li, Guoyuan & Chen, Anthony, 2023. "Strategy-based transit stochastic user equilibrium model with capacity and number-of-transfers constraints," European Journal of Operational Research, Elsevier, vol. 305(1), pages 164-183.
    14. Wang, Guangchao & Jia, Ning & Ma, Shoufeng & Qi, Hang, 2014. "A rank-dependent bi-criterion equilibrium model for stochastic transportation environment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 511-529.
    15. Jiang, Gege & Fosgerau, Mogens & Lo, Hong K., 2020. "Route choice, travel time variability, and rational inattention," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 188-207.
    16. Li, Pengbo & Tian, Lijun & Xiao, Feng & Zhu, Hongwei, 2022. "Can day-to-day dynamic model be solved analytically? New insights on portraying equilibrium and accommodating autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 374-395.
    17. Teppei Kato & Kenetsu Uchida & William H. K. Lam & Agachai Sumalee, 2021. "Estimation of the value of travel time and of travel time reliability for heterogeneous drivers in a road network," Transportation, Springer, vol. 48(4), pages 1639-1670, August.
    18. Li-Jun Tian & Hai-Jun Huang & Zi-You Gao, 2012. "A Cumulative Perceived Value-Based Dynamic User Equilibrium Model Considering the Travelers’ Risk Evaluation on Arrival Time," Networks and Spatial Economics, Springer, vol. 12(4), pages 589-608, December.
    19. Li, Ruijie & Liu, Xiaobo & Nie, Yu (Marco), 2018. "Managing partially automated network traffic flow: Efficiency vs. stability," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 300-324.
    20. Li, Qing & Liao, Feixiong, 2020. "Incorporating vehicle self-relocations and traveler activity chains in a bi-level model of optimal deployment of shared autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 151-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:126:y:2019:i:c:p:139-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.