IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p2861-d1058112.html
   My bibliography  Save this article

Novel Furrow Diking Equipment-Design Aimed at Increasing Water Consumption Efficiency in Vineyards

Author

Listed:
  • Marius Remus Oprescu

    (National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry—INMA Bucharest, 013811 Bucharest, Romania)

  • Sorin-Stefan Biris

    (Department of Biotechnical Systems, University Politehnica of Bucharest, 006042 Bucharest, Romania)

  • Florin Nenciu

    (National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry—INMA Bucharest, 013811 Bucharest, Romania)

Abstract

Productivity in viticultural practices is highly dependent on seasonal availability of rainfall and the efficiency of soil and water conservation strategies. Sustainable water consumption has been regarded as a business, social, and environmental responsibility, since resource availability becomes more challenging. The present research evaluates a new agricultural equipment design, employed in furrow compartmentalization works, with the aim of improving the efficiency of rainwater storage in the soil, reducing the runoff and the erosion on sloping soils. The newly developed equipment operates on the basis of a rigid memory and employs the cam-tappet mechanism, known for its high customization potential. The system functionality has been improved by integrating enhanced hoe shapes, adapted for the demanding working conditions encountered in vineyards. The evaluated performance indicators showed an increased up to 7% of the water storage effectiveness, while the micro-basins construction performance improved by 10%. The furrow diking phase is integrated into the weeding works, and recorded low additional fuel consumption of only 3–5%, being appreciated by farmers due to its constructive simplicity. As a result, the equipment has shown a significant application potential to increase deep water storage in vineyards and reduce the negative impacts of climate change on agriculture.

Suggested Citation

  • Marius Remus Oprescu & Sorin-Stefan Biris & Florin Nenciu, 2023. "Novel Furrow Diking Equipment-Design Aimed at Increasing Water Consumption Efficiency in Vineyards," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2861-:d:1058112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/2861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/2861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuti, R.C. & Lamb, M.C. & Sorensen, R.B. & Truman, C.C., 2009. "Agronomic and economic response to furrow diking tillage in irrigated and non-irrigated cotton (Gossypium hirsutum L.)," Agricultural Water Management, Elsevier, vol. 96(7), pages 1078-1084, July.
    2. Stefano Salata & Sila Ozkavaf-Senalp & Koray Velibeyoğlu & Zeynep Elburz, 2022. "Land Suitability Analysis for Vineyard Cultivation in the Izmir Metropolitan Area," Land, MDPI, vol. 11(3), pages 1-20, March.
    3. Florin Nenciu & Marius Remus Oprescu & Sorin-Stefan Biris, 2022. "Improve the Constructive Design of a Furrow Diking Rotor Aimed at Increasing Water Consumption Efficiency in Sunflower Farming Systems," Agriculture, MDPI, vol. 12(6), pages 1-22, June.
    4. Corneliu Cojocaru & Diana Mariana Cocârţă & Irina Aura Istrate & Igor Creţescu, 2017. "Graphical Methodology of Global Pollution Index for the Environmental Impact Assessment Using Two Environmental Components," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    5. Truman, C.C. & Nuti, R.C., 2009. "Improved water capture and erosion reduction through furrow diking," Agricultural Water Management, Elsevier, vol. 96(7), pages 1071-1077, July.
    6. Florin Nenciu & Iustina Stanciulescu & Horia Vlad & Andrei Gabur & Ovidiu Leonard Turcu & Tiberiu Apostol & Valentin Nicolae Vladut & Diana Mariana Cocarta & Constantin Stan, 2022. "Decentralized Processing Performance of Fruit and Vegetable Waste Discarded from Retail, Using an Automated Thermophilic Composting Technology," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    7. Paula Triviño-Tarradas & Pilar Carranza-Cañadas & Francisco-Javier Mesas-Carrascosa & Emilio J. Gonzalez-Sanchez, 2020. "Evaluation of Agricultural Sustainability on a Mixed Vineyard and Olive-Grove Farm in Southern Spain through the INSPIA Model," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florin Nenciu & Viorel Fatu & Vlad Arsenoaia & Catalin Persu & Iulian Voicea & Nicolae-Valentin Vladut & Mihai Gabriel Matache & Iuliana Gageanu & Eugen Marin & Sorin-Stefan Biris & Nicoleta Ungureanu, 2023. "Bioactive Compounds Extraction Using a Hybrid Ultrasound and High-Pressure Technology for Sustainable Farming Systems," Agriculture, MDPI, vol. 13(4), pages 1-17, April.
    2. Ana-Maria Tăbărașu & Florin Nenciu & Dragoș-Nicolae Anghelache & Valentin-Nicolae Vlăduț & Iuliana Găgeanu, 2024. "Hybrid Percolation–Ultrasound Method for Extracting Bioactive Compounds from Urtica dioica and Salvia officinalis," Agriculture, MDPI, vol. 14(9), pages 1-15, September.
    3. Iulian Voicea & Florin Nenciu & Nicolae-Valentin Vlăduț & Mihai-Gabriel Matache & Catalin Persu & Dan Cujbescu, 2024. "Exploring a Self-Sufficiency Approach within a Sustainable Integrated Pisciculture Farming System," Sustainability, MDPI, vol. 16(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florin Nenciu & Marius Remus Oprescu & Sorin-Stefan Biris, 2022. "Improve the Constructive Design of a Furrow Diking Rotor Aimed at Increasing Water Consumption Efficiency in Sunflower Farming Systems," Agriculture, MDPI, vol. 12(6), pages 1-22, June.
    2. Florin Nenciu & Iulian Voicea & Diana Mariana Cocarta & Valentin Nicolae Vladut & Mihai Gabriel Matache & Vlad-Nicolae Arsenoaia, 2022. "“Zero-Waste” Food Production System Supporting the Synergic Interaction between Aquaculture and Horticulture," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    3. Daniel Vejchar & Jan Velebil & Karel Kubín & Jiří Bradna & Jan Malaťák, 2023. "The Effect of Reservoir Cultivation on Conventional Maize in Sandy-Loam Soil," Agriculture, MDPI, vol. 13(6), pages 1-12, June.
    4. Daniel Vejchar & Josef Vacek & David Hájek & Jiří Bradna & Pavel Kasal & Andrea Svobodová, 2019. "Reduction of surface runoff on sloped agricultural land in potato cultivation in de-stoned soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(3), pages 118-124.
    5. Gordon, R.J. & VanderZaag, A.C. & Dekker, P.A. & De Haan, R. & Madani, A., 2011. "Impact of modified tillage on runoff and nutrient loads from potato fields in Prince Edward Island," Agricultural Water Management, Elsevier, vol. 98(12), pages 1782-1788, October.
    6. Truman, C.C. & Nuti, R.C., 2010. "Furrow diking in conservation tillage," Agricultural Water Management, Elsevier, vol. 97(6), pages 835-840, June.
    7. Rafael E. Hidalgo Fernández & Pilar Carranza-Cañadas & Francisco J. García-Salcedo & Paula Triviño-Tarradas, 2020. "Parameterisation and Optimisation of a Hand-Rake Sweeper: Application in Olive Picking," Agriculture, MDPI, vol. 10(9), pages 1-18, August.
    8. Mevlut Uyan & Jarosław Janus & Ela Ertunç, 2023. "Land Use Suitability Model for Grapevine ( Vitis vinifera L.) Cultivation Using the Best Worst Method: A Case Study from Ankara/Türkiye," Agriculture, MDPI, vol. 13(9), pages 1-20, August.
    9. Ayse Yavuz Ozalp & Halil Akinci, 2023. "Evaluation of Land Suitability for Olive ( Olea europaea L.) Cultivation Using the Random Forest Algorithm," Agriculture, MDPI, vol. 13(6), pages 1-22, June.
    10. Araya, A. & Stroosnijder, L., 2010. "Effects of tied ridges and mulch on barley (Hordeum vulgare) rainwater use efficiency and production in Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 97(6), pages 841-847, June.
    11. Truman, C.C. & Potter, T.L. & Nuti, R.C. & Franklin, D.H. & Bosch, D.D., 2011. "Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols," Agricultural Water Management, Elsevier, vol. 98(8), pages 1189-1196, May.
    12. Nuti, R.C. & Lamb, M.C. & Sorensen, R.B. & Truman, C.C., 2009. "Agronomic and economic response to furrow diking tillage in irrigated and non-irrigated cotton (Gossypium hirsutum L.)," Agricultural Water Management, Elsevier, vol. 96(7), pages 1078-1084, July.
    13. Trigo, Ana & Marta-Costa, Ana & Fragoso, Rui, 2023. "Improving sustainability assessment: A context-oriented classification analysis for the wine industry," Land Use Policy, Elsevier, vol. 126(C).
    14. Renyi Yang & Changbiao Zhong, 2022. "Land Suitability Evaluation of Sorghum Planting in Luquan County of Jinsha River Dry and Hot Valley Based on the Perspective of Sustainable Development of Characteristic Poverty Alleviation Industry," Agriculture, MDPI, vol. 12(11), pages 1-23, November.
    15. Okeyo, A.I. & Mucheru-Muna, M. & Mugwe, J. & Ngetich, K.F. & Mugendi, D.N. & Diels, J. & Shisanya, C.A., 2014. "Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya," Agricultural Water Management, Elsevier, vol. 137(C), pages 52-58.
    16. Federica Ghilardi & Andrea Virano & Marco Prandi & Enrico Borgogno-Mondino, 2023. "Zonation of a Viticultural Territorial Context in Piemonte (NW Italy) to Support Terroir Identification: The Role of Pedological, Topographical and Climatic Factors," Land, MDPI, vol. 12(3), pages 1-24, March.
    17. Cristina (Soricu) Feodorov & Ana Maria Velcea & Florin Ungureanu & Tiberiu Apostol & Lăcrămioara Diana Robescu & Diana Mariana Cocarta, 2022. "Toward a Circular Bioeconomy within Food Waste Valorization: A Case Study of an On-Site Composting System of Restaurant Organic Waste," Sustainability, MDPI, vol. 14(14), pages 1-10, July.
    18. Remigio Paradelo & Jose Navarro-Pedreño & Bruno Glaser & Anna Grobelak & Aneta Kowalska & Bal Ram Singh, 2023. "Potential and Constraints of Use of Organic Amendments from Agricultural Residues for Improvement of Soil Properties," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    19. Nicoleta Ungureanu & Valentin Vlăduț & Sorin-Ștefan Biriș, 2022. "Sustainable Valorization of Waste and By-Products from Sugarcane Processing," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    20. Salazar, M.R. & Hook, J.E. & Garcia y Garcia, A. & Paz, J.O. & Chaves, B. & Hoogenboom, G., 2012. "Estimating irrigation water use for maize in the Southeastern USA: A modeling approach," Agricultural Water Management, Elsevier, vol. 107(C), pages 104-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2861-:d:1058112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.