IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p11089-d907128.html
   My bibliography  Save this article

Sustainable Valorization of Waste and By-Products from Sugarcane Processing

Author

Listed:
  • Nicoleta Ungureanu

    (Department of Biotechnical Systems, University Politehnica of Bucharest, 006042 Bucharest, Romania)

  • Valentin Vlăduț

    (Department of Biotechnical Systems, University Politehnica of Bucharest, 006042 Bucharest, Romania
    National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry—INMA, 013813 Bucharest, Romania)

  • Sorin-Ștefan Biriș

    (Department of Biotechnical Systems, University Politehnica of Bucharest, 006042 Bucharest, Romania)

Abstract

Sugarcane is a lignocellulosic crop and the juice extracted from its stalks provides the raw material for 86% of sugar production. Globally, sugarcane processing to obtain sugar and/or ethanol generates more than 279 million tons of solid and liquid waste annually, as well as by-products; namely, straws, bagasse, press mud, wastewater, ash from bagasse incineration, vinasse from ethanol distillation, and molasses. If not properly managed, this waste will pose risks to both environmental factors and human health. Lately, valorization of waste has gained momentum, having an important contribution to the fulfillment of policies and objectives related to sustainable development and circular bioeconomy. Various technologies are well-established and implemented for the valorization of waste and by-products from sugarcane processing, while other innovative technologies are still in the research and development stage, with encouraging prospects. We propose a sustainable sugarcane processing flow and present an analysis of the physico-chemical characteristics of generated wastes and by-products. We emphasize the available possibilities of valorizing each waste and by-product, considering that they are important biomass resources for obtaining biofuels and a wide range of other products with added value, which will contribute to the sustainability of the environment, agriculture, and human health worldwide.

Suggested Citation

  • Nicoleta Ungureanu & Valentin Vlăduț & Sorin-Ștefan Biriș, 2022. "Sustainable Valorization of Waste and By-Products from Sugarcane Processing," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11089-:d:907128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/11089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/11089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Delmaria Richards & Helmut Yabar, 2022. "Potential of Renewable Energy in Jamaica’s Power Sector: Feasibility Analysis of Biogas Production for Electricity Generation," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    2. Monirul Islam Miskat & Ashfaq Ahmed & Hemal Chowdhury & Tamal Chowdhury & Piyal Chowdhury & Sadiq M. Sait & Young-Kwon Park, 2020. "Assessing the Theoretical Prospects of Bioethanol Production as a Biofuel from Agricultural Residues in Bangladesh: A Review," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    3. Andréia Arenari de Siqueira & Guilherme Chagas Cordeiro, 2022. "Sustainable Cements Containing Sugarcane Bagasse Ash and Limestone: Effects on Compressive Strength and Acid Attack of Mortar," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    4. Balasubramanian Vignesh Kumar & Balakrishnan Muthumari & Murugan Kavitha & John Kennedy John Praveen Kumar & Subbu Thavamurugan & Alagarsamy Arun & Muthuramalingam Jothi Basu, 2022. "Studies on Optimization of Sustainable Lactic Acid Production by Bacillus amyloliquefaciens from Sugarcane Molasses through Microbial Fermentation," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    5. Moreira, L.C. & Borges, P.O. & Cavalcante, R.M. & Young, A.F., 2022. "Simulation and economic evaluation of process alternatives for biogas production and purification from sugarcane vinasse," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
    7. Anoop Singh & Surajbhan Sevda & Ibrahim M. Abu Reesh & Karolien Vanbroekhoven & Dheeraj Rathore & Deepak Pant, 2015. "Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability," Energies, MDPI, vol. 8(11), pages 1-19, November.
    8. Soufiane Akhramez & Ahmed Fatimi & Oseweuba Okoro & Maryam Hajiabbas & Abdelghani Boussetta & Amine Moubarik & Abderrafia Hafid & Mostafa Khouili & Julia Siminska-Stanny & Cecile Brigode & Armin Shava, 2022. "The Circular Economy Paradigm: Modification of Bagasse-Derived Lignin as a Precursor to Sustainable Hydrogel Production," ULB Institutional Repository 2013/349687, ULB -- Universite Libre de Bruxelles.
    9. Sohail Khan & Fuzhi Lu & Muhammad Kashif & Peihong Shen, 2021. "Multiple Effects of Different Nickel Concentrations on the Stability of Anaerobic Digestion of Molasses," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
    10. Soufiane Akhramez & Ahmed Fatimi & Oseweuba Valentine Okoro & Maryam Hajiabbas & Abdelghani Boussetta & Amine Moubarik & Abderrafia Hafid & Mostafa Khouili & Julia Simińska-Stanny & Cecile Brigode & A, 2022. "The Circular Economy Paradigm: Modification of Bagasse-Derived Lignin as a Precursor to Sustainable Hydrogel Production," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    11. Silalertruksa, Thapat & Gheewala, Shabbir H. & Pongpat, Patcharaporn, 2015. "Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator," Applied Energy, Elsevier, vol. 160(C), pages 603-609.
    12. Antunes, F.A.F. & Chandel, A.K. & Brumano, L.P. & Terán Hilares, R. & Peres, G.F.D. & Ayabe, L.E.S. & Sorato, V.S. & Santos, J.R. & Santos, J.C. & Da Silva, S.S., 2018. "A novel process intensification strategy for second-generation ethanol production from sugarcane bagasse in fluidized bed reactor," Renewable Energy, Elsevier, vol. 124(C), pages 189-196.
    13. Pegoretti, Thaís dos Santos & Mathieux, Fabrice & Evrard, Damien & Brissaud, Daniel & Arruda, José Roberto de França, 2014. "Use of recycled natural fibres in industrial products: A comparative LCA case study on acoustic components in the Brazilian automotive sector," Resources, Conservation & Recycling, Elsevier, vol. 84(C), pages 1-14.
    14. Raj, Kanak & Krishnan, Chandraraj, 2020. "Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis," Renewable Energy, Elsevier, vol. 153(C), pages 392-403.
    15. Sindhu, Raveendran & Gnansounou, Edgard & Binod, Parameswaran & Pandey, Ashok, 2016. "Bioconversion of sugarcane crop residue for value added products – An overview," Renewable Energy, Elsevier, vol. 98(C), pages 203-215.
    16. Alves, Moises & Ponce, Gustavo H.S.F. & Silva, Maria Aparecida & Ensinas, Adriano V., 2015. "Surplus electricity production in sugarcane mills using residual bagasse and straw as fuel," Energy, Elsevier, vol. 91(C), pages 751-757.
    17. Florin Nenciu & Iustina Stanciulescu & Horia Vlad & Andrei Gabur & Ovidiu Leonard Turcu & Tiberiu Apostol & Valentin Nicolae Vladut & Diana Mariana Cocarta & Constantin Stan, 2022. "Decentralized Processing Performance of Fruit and Vegetable Waste Discarded from Retail, Using an Automated Thermophilic Composting Technology," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    18. Turdera, Mirko V., 2013. "Energy balance, forecasting of bioelectricity generation and greenhouse gas emission balance in the ethanol production at sugarcane mills in the state of Mato Grosso do Sul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 582-588.
    19. Morzina Akter & Riyadh F. Halawani & Fahed A. Aloufi & Md. Abu Taleb & Sharmin Akter & Shreef Mahmood, 2022. "Utilization of Agro-Industrial Wastes for the Production of Quality Oyster Mushrooms," Sustainability, MDPI, vol. 14(2), pages 1-10, January.
    20. Gabriel Cabral da Fonseca & Marilene Silva Oliveira & Carlos Vinicius Costa Martins & João Carlos Perbone de Souza, 2022. "How the Carbonization Time of Sugarcane Biomass Affects the Microstructure of Biochar and the Adsorption Process?," Sustainability, MDPI, vol. 14(3), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Lopes, Verônica dos Santos & Fischer, Janaína & Pinheiro, Tais Magalhães Abrantes & Cabral, Bruna Vieira & Cardoso, Vicelma Luiz & Coutinho Filho, Ubirajara, 2017. "Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse," Renewable Energy, Elsevier, vol. 109(C), pages 305-310.
    3. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    4. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    5. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    6. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Thapat Silalertruksa & Chanipa Wirodcharuskul & Shabbir H. Gheewala, 2022. "Environmental Sustainability of Waste Circulation Models for Sugarcane Biorefinery System in Thailand," Energies, MDPI, vol. 15(24), pages 1-21, December.
    8. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    9. Asma Sattar & Chaudhry Arslan & Changying Ji & Sumiyya Sattar & Irshad Ali Mari & Haroon Rashid & Fariha Ilyas, 2016. "Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions," Energies, MDPI, vol. 9(3), pages 1-14, March.
    10. Wei, Maogui & Xiong, Shaojun & Chen, Feng & Geladi, Paul & Eilertsen, Lill & Myronycheva, Olena & Lestander, Torbjörn A. & Thyrel, Mikael, 2020. "Energy smart hot-air pasteurisation as effective as energy intense autoclaving for fungal preprocessing of lignocellulose feedstock for bioethanol fuel production," Renewable Energy, Elsevier, vol. 155(C), pages 237-247.
    11. Sim, Xue Yan & Tan, Jian Ping & He, Ning & Yeap, Swee Keong & Hui, Yew Woh & Luthfi, Abdullah Amru Indera & Manaf, Shareena Fairuz Abdul & Bukhari, Nurul Adela & Jamali, Nur Syakina, 2023. "Unraveling the effect of redox potential on dark fermentative hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    12. Maria Alexandropoulou & Georgia Antonopoulou & Ioanna Ntaikou & Gerasimos Lyberatos, 2017. "Fungal Pretreatment of Willow Sawdust with Abortiporus biennis for Anaerobic Digestion: Impact of an External Nitrogen Source," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    13. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    14. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    15. Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.
    16. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    17. Copa Rey, José Ramón & Tamayo Pacheco, Jorge Jadid & António da Cruz Tarelho, Luís & Silva, Valter & Cardoso, João Sousa & Silveira, José Luz & Tuna, Celso Eduardo, 2021. "Evaluation of cogeneration alternative systems integrating biomass gasification applied to a Brazilian sugar industry," Renewable Energy, Elsevier, vol. 178(C), pages 318-333.
    18. Kunnika Changwichan & Thapat Silalertruksa & Shabbir H. Gheewala, 2018. "Eco-Efficiency Assessment of Bioplastics Production Systems and End-of-Life Options," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    19. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    20. Nariê Rinke Dias de Souza & Alexandre Souza & Mateus Ferreira Chagas & Thayse Aparecida Dourado Hernandes & Otávio Cavalett, 2022. "Addressing the contributions of electricity from biomass in Brazil in the context of the Sustainable Development Goals using life cycle assessment methods," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 980-995, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11089-:d:907128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.