IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13396-d945157.html
   My bibliography  Save this article

“Zero-Waste” Food Production System Supporting the Synergic Interaction between Aquaculture and Horticulture

Author

Listed:
  • Florin Nenciu

    (National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry—INMA Bucharest, 013811 Bucharest, Romania)

  • Iulian Voicea

    (National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry—INMA Bucharest, 013811 Bucharest, Romania)

  • Diana Mariana Cocarta

    (Faculty of Energy Engineering, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
    Academy of Romanian Scientists, 030167 Bucharest, Romania)

  • Valentin Nicolae Vladut

    (National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry—INMA Bucharest, 013811 Bucharest, Romania)

  • Mihai Gabriel Matache

    (National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry—INMA Bucharest, 013811 Bucharest, Romania)

  • Vlad-Nicolae Arsenoaia

    (Faculty of Agriculture, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 700490 Iasi, Romania)

Abstract

Inadequate production practices are widely used in aquaculture management, causing excessive water and energy usage, as well as ecological damage. New approaches to sustainable aquaculture attempt to increase production efficiency, while reducing the quantities generated of wastewater and sludge. The sustainable operating techniques are often ineffective, expensive, and difficult to implement. The present article proposes a zero-waste production system, designed for growing fish and vegetables, using a new circular operational concept that creates synergies between fish farming and horticulture. In order to optimize the operational flows with resources, products, and wastes in an integrated zero-waste food production cluster, a business model was designed associating three ecological production practices: a closed fishing pond, a technology for growing vegetables in straw bales, and a composting system. The design had the role to assist the transition toward multiple circular material flows, where the waste can be fully reintegrated into the production processes. A comparative evaluation was conducted in three alternative growing environments, namely, a soilless culture established in straw bales, a culture grown in soil that had received compost fertilizer, and the conventional farming technique. When compared to conventional methods, experiments showed a significant increase in the cluster’s cumulative productivity, resulting in a 12% improvement in energy efficiency, 18% increase in food production, and 25% decrease in operating expenses.

Suggested Citation

  • Florin Nenciu & Iulian Voicea & Diana Mariana Cocarta & Valentin Nicolae Vladut & Mihai Gabriel Matache & Vlad-Nicolae Arsenoaia, 2022. "“Zero-Waste” Food Production System Supporting the Synergic Interaction between Aquaculture and Horticulture," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13396-:d:945157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Marcus Strauch & Lisa Carolina Wenzel & Adrian Bischoff & Olaf Dellwig & Jan Klein & Andrea Schüch & Berit Wasenitz & Harry Wilhelm Palm, 2018. "Commercial African Catfish ( Clarias gariepinus ) Recirculating Aquaculture Systems: Assessment of Element and Energy Pathways with Special Focus on the Phosphorus Cycle," Sustainability, MDPI, vol. 10(6), pages 1-29, May.
    2. Nancy Bocken & Lars Strupeit & Katherine Whalen & Julia Nußholz, 2019. "A Review and Evaluation of Circular Business Model Innovation Tools," Sustainability, MDPI, vol. 11(8), pages 1-25, April.
    3. Emilia Paone & Filippo Fazzino & Daniela Maria Pizzone & Antonino Scurria & Mario Pagliaro & Rosaria Ciriminna & Paolo Salvatore Calabrò, 2021. "Towards the Anchovy Biorefinery: Biogas Production from Anchovy Processing Waste after Fish Oil Extraction with Biobased Limonene," Sustainability, MDPI, vol. 13(5), pages 1-12, February.
    4. Massimo Lucarini & Antonio Zuorro & Gabriella Di Lena & Roberto Lavecchia & Alessandra Durazzo & Barbara Benedetti & Ginevra Lombardi-Boccia, 2020. "Sustainable Management of Secondary Raw Materials from the Marine Food-Chain: A Case-Study Perspective," Sustainability, MDPI, vol. 12(21), pages 1-11, October.
    5. Florin Nenciu & Marius Remus Oprescu & Sorin-Stefan Biris, 2022. "Improve the Constructive Design of a Furrow Diking Rotor Aimed at Increasing Water Consumption Efficiency in Sunflower Farming Systems," Agriculture, MDPI, vol. 12(6), pages 1-22, June.
    6. Corneliu Cojocaru & Diana Mariana Cocârţă & Irina Aura Istrate & Igor Creţescu, 2017. "Graphical Methodology of Global Pollution Index for the Environmental Impact Assessment Using Two Environmental Components," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    7. Florin Nenciu & Iustina Stanciulescu & Horia Vlad & Andrei Gabur & Ovidiu Leonard Turcu & Tiberiu Apostol & Valentin Nicolae Vladut & Diana Mariana Cocarta & Constantin Stan, 2022. "Decentralized Processing Performance of Fruit and Vegetable Waste Discarded from Retail, Using an Automated Thermophilic Composting Technology," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phoebe Koundouri & Anthony Cox & Arunima Malik & Ben Groom & Brian O'Callaghan & Cameron Hepburn & Catherine Kilelu & Christine Lins & Dale Squires & E. Somanathan & Heba Handoussa & Ian Bateman & Ism, 2023. "The Recovery from the Covid-19 Pandemic as an Opportunity for a Sustainable and Resilient World," DEOS Working Papers 2311, Athens University of Economics and Business.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marius Remus Oprescu & Sorin-Stefan Biris & Florin Nenciu, 2023. "Novel Furrow Diking Equipment-Design Aimed at Increasing Water Consumption Efficiency in Vineyards," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Florin Nenciu & Marius Remus Oprescu & Sorin-Stefan Biris, 2022. "Improve the Constructive Design of a Furrow Diking Rotor Aimed at Increasing Water Consumption Efficiency in Sunflower Farming Systems," Agriculture, MDPI, vol. 12(6), pages 1-22, June.
    3. Christopher Shaw & Klaus Knopf & Werner Kloas, 2022. "Toward Feeds for Circular Multitrophic Food Production Systems: Holistically Evaluating Growth Performance and Nutrient Excretion of African Catfish Fed Fish Meal-Free Diets in Comparison to Nile Tila," Sustainability, MDPI, vol. 14(21), pages 1-31, November.
    4. Inga Uvarova & Dzintra Atstaja & Viola Korpa, 2020. "Challenges of the introduction of circular business models within rural SMEs of EU," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 9(2), pages 128-149, December.
    5. Joaquin Sanchez-Planelles & Marival Segarra-Oña & Angel Peiro-Signes, 2020. "Building a Theoretical Framework for Corporate Sustainability," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    6. Roberto Hernández-Chea & Akriti Jain & Nancy M. P. Bocken & Anjula Gurtoo, 2021. "The Business Model in Sustainability Transitions: A Conceptualization," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    7. José-Antonio Corral-Marfil & Núria Arimany-Serrat & Emma L. Hitchen & Carme Viladecans-Riera, 2021. "Recycling Technology Innovation as a Source of Competitive Advantage: The Sustainable and Circular Business Model of a Bicentennial Company," Sustainability, MDPI, vol. 13(14), pages 1-37, July.
    8. Julia Prüter & Sebastian Marcus Strauch & Lisa Carolina Wenzel & Wantana Klysubun & Harry Wilhelm Palm & Peter Leinweber, 2020. "Organic Matter Composition and Phosphorus Speciation of Solid Waste from an African Catfish Recirculating Aquaculture System," Agriculture, MDPI, vol. 10(10), pages 1-14, October.
    9. Do, Quynh & Mishra, Nishikant & Colicchia, Claudia & Creazza, Alessandro & Ramudhin, Amar, 2022. "An extended institutional theory perspective on the adoption of circular economy practices: Insights from the seafood industry," International Journal of Production Economics, Elsevier, vol. 247(C).
    10. Mechthild Donner & Ivana Radić & Yamna Erraach & Fatima El Hadad-Gauthier, 2022. "Implementation of circular business models for olive oil waste and by-product valorization," Post-Print hal-03756908, HAL.
    11. Oskar Rexfelt & Anneli Selvefors, 2021. "The Use2Use Design Toolkit—Tools for User-Centred Circular Design," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    12. Daniel Jugend & Hugo Henrique dos Santos & Susana Garrido & Regiane Máximo Siqueira & Jaime A. Mesa, 2024. "Circular product design challenges: An exploratory study on critical barriers," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4825-4842, July.
    13. Daniele Eckert Matzembacher & Mervi Raudsaar & Marcia Dutra de Barcellos & Tõnis Mets, 2020. "Business Models’ Innovations to Overcome Hybridity-Related Tensions in Sustainable Entrepreneurship," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    14. Mechthild Donner & Ivana Radić & Yamna Erraach & Fatima El Hadad-Gauthier, 2022. "Implementation of Circular Business Models for Olive Oil Waste and By-Product Valorization," Resources, MDPI, vol. 11(7), pages 1-18, July.
    15. Rodrigues Dias, Veruska Mazza & Jugend, Daniel & de Camargo Fiorini, Paula & Razzino, Carlos do Amaral & Paula Pinheiro, Marco Antonio, 2022. "Possibilities for applying the circular economy in the aerospace industry: Practices, opportunities and challenges," Journal of Air Transport Management, Elsevier, vol. 102(C).
    16. Mechthild Donner & Hugo de Vries, 2023. "Innovative business models for a sustainable circular bioeconomy in the french agrifood domain," Post-Print hal-04047682, HAL.
    17. Mark Anthony Camilleri, 2020. "European environment policy for the circular economy: Implications for business and industry stakeholders," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(6), pages 1804-1812, November.
    18. Tomas Santa‐Maria & Walter J. V. Vermeulen & Rupert J. Baumgartner, 2022. "How do incumbent firms innovate their business models for the circular economy? Identifying micro‐foundations of dynamic capabilities," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1308-1333, May.
    19. Ana de Jesus & Minna Lammi & Teresa Domenech & Fedra Vanhuyse & Sandro Mendonça, 2021. "Eco-Innovation Diversity in a Circular Economy: Towards Circular Innovation Studies," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    20. Winston Jerónimo Silvestre & Ana Fonseca & Sandra Naomi Morioka, 2022. "Strategic sustainability integration: Merging management tools to support business model decisions," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2052-2067, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13396-:d:945157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.