IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2437-d1050888.html
   My bibliography  Save this article

Comparison of Dynamic Response Characteristics of Typical Energy Storage Technologies for Suppressing Wind Power Fluctuation

Author

Listed:
  • Hong Qu

    (School of Economic and Management, Chang Sha University of Science & Technology, Changsha 410114, China)

  • Ze Ye

    (School of Economic and Management, Chang Sha University of Science & Technology, Changsha 410114, China)

Abstract

The intermittence and randomness of wind speed leads to the fluctuation of wind turbine output power. In order to study the applicability of battery, super capacitor and flywheel energy storage technology in suppressing wind power fluctuation, this paper takes a 3 MW direct drive wind turbine as an example, and, through the establishment of a wind storage system model, the dynamic response characteristics and application effects of the three typical energy storage technologies to suppress the power fluctuation of the wind turbine under two wind speed fluctuation scenarios are simulated and studied, and the stability of output power is quantitatively analyzed. Results show that all the three energy storage systems respond well to power command curves, but when the wind power fluctuation is large, the flywheel energy storage has a better effect on suppressing the wind power fluctuation, which can suppress about 70% of the power fluctuation.

Suggested Citation

  • Hong Qu & Ze Ye, 2023. "Comparison of Dynamic Response Characteristics of Typical Energy Storage Technologies for Suppressing Wind Power Fluctuation," Sustainability, MDPI, vol. 15(3), pages 1-11, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2437-:d:1050888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingyu Liu & Lei Zhang, 2016. "Strategy Design of Hybrid Energy Storage System for Smoothing Wind Power Fluctuations," Energies, MDPI, vol. 9(12), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Run Qin & Juntao Chen & Zhong Li & Wei Teng & Yibing Liu, 2023. "Simulation of Secondary Frequency Modulation Process of Wind Power with Auxiliary of Flywheel Energy Storage," Sustainability, MDPI, vol. 15(15), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lujun Wang & Jiong Guo & Chen Xu & Tiezhou Wu & Huipin Lin, 2019. "Hybrid Model Predictive Control Strategy of Supercapacitor Energy Storage System Based on Double Active Bridge," Energies, MDPI, vol. 12(11), pages 1-20, June.
    2. Ramy Georgious & Jorge Garcia & Pablo Garcia & Angel Navarro-Rodriguez, 2018. "A Comparison of Non-Isolated High-Gain Three-Port Converters for Hybrid Energy Storage Systems," Energies, MDPI, vol. 11(3), pages 1-24, March.
    3. Gustavo Navarro & Jorge Torres & Marcos Blanco & Jorge Nájera & Miguel Santos-Herran & Marcos Lafoz, 2021. "Present and Future of Supercapacitor Technology Applied to Powertrains, Renewable Generation and Grid Connection Applications," Energies, MDPI, vol. 14(11), pages 1-29, May.
    4. Xiao Han & Ming Zhou & Gengyin Li & Kwang Y. Lee, 2017. "Optimal Dispatching of Active Distribution Networks Based on Load Equilibrium," Energies, MDPI, vol. 10(12), pages 1-17, December.
    5. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Zhun Meng & Guo-Dong Li, 2017. "An Isolated Three-Port Bidirectional DC-DC Converter with Enlarged ZVS Region for HESS Applications in DC Microgrids," Energies, MDPI, vol. 10(4), pages 1-23, April.
    6. Maria Guadalupe Reveles-Miranda & Manuel Israel Flota-Bañuelos & Freddy Chan-Puc & Daniella Pacheco-Catalán, 2017. "Experimental Evaluation of a Switching Matrix Applied in a Bank of Supercapacitors," Energies, MDPI, vol. 10(12), pages 1-12, December.
    7. Pingping Yun & Yongfeng Ren & Yu Xue, 2018. "Energy-Storage Optimization Strategy for Reducing Wind Power Fluctuation via Markov Prediction and PSO Method," Energies, MDPI, vol. 11(12), pages 1-23, December.
    8. Xingning Han & Shiwu Liao & Xiaomeng Ai & Wei Yao & Jinyu Wen, 2017. "Determining the Minimal Power Capacity of Energy Storage to Accommodate Renewable Generation," Energies, MDPI, vol. 10(4), pages 1-17, April.
    9. Yi Tang & Jianfeng Dai & Qi Wang & Yixin Feng, 2017. "Frequency Control Strategy for Black Starts via PMSG-Based Wind Power Generation," Energies, MDPI, vol. 10(3), pages 1-14, March.
    10. Tiezhou Wu & Xiao Shi & Li Liao & Chuanjian Zhou & Hang Zhou & Yuehong Su, 2019. "A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization," Energies, MDPI, vol. 12(4), pages 1-11, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2437-:d:1050888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.