Capacity Optimization Configuration of Hybrid Energy Storage Systems for Wind Farms Based on Improved k-means and Two-Stage Decomposition
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shuang Lei & Yu He & Jing Zhang & Kun Deng, 2023. "Optimal Configuration of Hybrid Energy Storage Capacity in a Microgrid Based on Variational Mode Decomposition," Energies, MDPI, vol. 16(11), pages 1-19, May.
- Hong Qu & Ze Ye, 2023. "Comparison of Dynamic Response Characteristics of Typical Energy Storage Technologies for Suppressing Wind Power Fluctuation," Sustainability, MDPI, vol. 15(3), pages 1-11, January.
- Zhang, Yagang & Pan, Zhiya & Wang, Hui & Wang, Jingchao & Zhao, Zheng & Wang, Fei, 2023. "Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach," Energy, Elsevier, vol. 283(C).
- Yang, Zhixue & Ren, Zhouyang & Li, Hui & Sun, Zhiyuan & Feng, Jianbing & Xia, Weiyi, 2024. "A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data," Applied Energy, Elsevier, vol. 371(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Jianfang & Jia, Li & Zhou, Chengyu, 2024. "Probability density function based adaptive ensemble learning with global convergence for wind power prediction," Energy, Elsevier, vol. 312(C).
- Hou, Guolian & Ye, Lingling & Huang, Ting & Huang, Congzhi, 2024. "Intelligent modeling of combined heat and power unit under full operating conditions via improved crossformer and precise sparrow search algorithm," Energy, Elsevier, vol. 308(C).
- Zhao, Wanbing & Chang, Weiguang & Yang, Qiang, 2024. "Collaborative energy management of interconnected regional integrated energy systems considering spatio-temporal characteristics," Renewable Energy, Elsevier, vol. 235(C).
- Wang, Junjie & Ye, Li & Ding, Xiaoyu & Dang, Yaoguo, 2024. "A novel seasonal grey prediction model with time-lag and interactive effects for forecasting the photovoltaic power generation," Energy, Elsevier, vol. 304(C).
- Chen, Wei & Qin, Chengliang & Ma, Zhe & Li, Jian & Zhang, Tong & Wang, Yazhou & Zhang, Xuelin & Xue, Xiaodai, 2024. "Dynamic simulation and optimal design of a combined cold and power system with 10 MW compressed air energy storage and integrated refrigeration," Energy, Elsevier, vol. 310(C).
- Yao Xiao & Caixia Yang & Tao Chen & Mingze Lei & Supannika Wattana & Buncha Wattana, 2025. "Strategies of a Wind–Solar–Storage System in Jiangxi Province Using the LEAP–NEMO Framework for Achieving Carbon Peaking Goals," Energies, MDPI, vol. 18(5), pages 1-19, February.
- Xia, Weiyi & Ren, Zhouyang & Li, Hui & Pan, Zhen, 2024. "A data-driven probabilistic evaluation method of hydrogen fuel cell vehicles hosting capacity for integrated hydrogen-electricity network," Applied Energy, Elsevier, vol. 376(PB).
- Run Qin & Juntao Chen & Zhong Li & Wei Teng & Yibing Liu, 2023. "Simulation of Secondary Frequency Modulation Process of Wind Power with Auxiliary of Flywheel Energy Storage," Sustainability, MDPI, vol. 15(15), pages 1-16, August.
- Long, Jian & Huang, Cheng & Deng, Kai & Wan, Lei & Hu, Guihua & Zhang, Feng, 2024. "Novel hybrid data-driven modeling integrating variational modal decomposition and dual-stage self-attention model: Applied to industrial petrochemical process," Energy, Elsevier, vol. 304(C).
- Jin, Ji & Tian, Jinyu & Yu, Min & Wu, Yong & Tang, Yuanyan, 2024. "A novel ultra-short-term wind speed prediction method based on dynamic adaptive continued fraction," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Gao, Yuan & Tahir, Mustafa & Siano, Pierluigi & Bi, Yue & Hu, Sile & Yang, Jiaqiang, 2025. "Optimization of renewable energy-based integrated energy systems: A three-stage stochastic robust model," Applied Energy, Elsevier, vol. 377(PD).
- Gang Lu & Bo Yuan & Baorui Nie & Peng Xia & Cong Wu & Guangzeng Sun, 2025. "Enhanced Dynamic Expansion Planning Model Incorporating Q-Learning and Distributionally Robust Optimization for Resilient and Cost-Efficient Distribution Networks," Energies, MDPI, vol. 18(5), pages 1-25, February.
- Kleanthis, Nikos & Stavrakas, Vassilis & Flamos, Alexandros, 2025. "Bidirectional soft-linking of a Capacity Expansion Model with a Production Cost Model to evaluate the feasibility of transition pathways towards carbon neutrality in the power sector," Applied Energy, Elsevier, vol. 378(PB).
More about this item
Keywords
power fluctuations; hybrid energy storage system; k-means++; improved complete ensemble empirical mode decomposition with adaptive noise; variational mode decomposition; improved pelican optimization algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:795-:d:1586678. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.