IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p1912-d1040992.html
   My bibliography  Save this article

CO 2 Impact Analysis for Road Embankment Construction: Comparison of Lignin and Lime Soil Stabilization Treatments

Author

Listed:
  • Giusi Perri

    (Department of Civil Engineering, University of Calabria, 87036 Rende, Italy)

  • Manuel De Rose

    (Department of Civil Engineering, University of Calabria, 87036 Rende, Italy)

  • Josipa Domitrović

    (Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb, Croatia)

  • Rosolino Vaiana

    (Department of Civil Engineering, University of Calabria, 87036 Rende, Italy)

Abstract

The last decade has witnessed increased attention toward products, services, and works with reduced environmental impacts. In the field of road construction, the use of alternative materials, wastes, or by-products obtained from industries is attracting considerable interest. The Life Cycle Assessment (LCA) is a powerful project-level tool that allows the assessment of the environmental impacts of a road infrastructure, from raw materials production to end of life phase. In this study, the environmental impacts (in terms of global warming potential-GWP) of an embankment construction project are investigated by a cradle-to-gate approach. The analysis focuses on all the processes involved in the construction of an embankment section, from the base to the preparation of the pavement formation level. The results are provided for two different road types and two different stabilization methods, including the use of lignin and lime. All processes that contribute towards global warming are investigated and described in detail. The most important finding of the LCA, in terms of GWP, is that the production of materials is the phase that contributes the significant share of the total environmental impact (more than 90%) for all scenarios. The lowest production-related emissions can be recorded for the scenarios involving lignin treatment for the stabilization of the embankment body. Furthermore, the percentage increase in GWP ranges between 51% and 39% for transportation activities and 10–11% for construction activities, comparing the scenarios including lime stabilization with the scenarios involving lignin treatment.

Suggested Citation

  • Giusi Perri & Manuel De Rose & Josipa Domitrović & Rosolino Vaiana, 2023. "CO 2 Impact Analysis for Road Embankment Construction: Comparison of Lignin and Lime Soil Stabilization Treatments," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1912-:d:1040992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/1912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/1912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filippo G. Praticò & Marinella Giunta & Marina Mistretta & Teresa Maria Gulotta, 2020. "Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    2. Konstantinos Mantalovas & Gaetano Di Mino & Ana Jimenez Del Barco Carrion & Elisabeth Keijzer & Björn Kalman & Tony Parry & Davide Lo Presti, 2020. "European National Road Authorities and Circular Economy: An Insight into Their Approaches," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
    3. Miriam Lettner & Pia Solt & Björn Rößiger & Daniela Pufky-Heinrich & Anna-Stiina Jääskeläinen & Peter Schwarzbauer & Franziska Hesser, 2018. "From Wood to Resin—Identifying Sustainability Levers through Hotspotting Lignin Valorisation Pathways," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margarita Ignatyeva & Vera Yurak & Oksana Logvinenko, 2020. "A New Look at the Natural Capital Concept: Approaches, Structure, and Evaluation Procedure," Sustainability, MDPI, vol. 12(21), pages 1-21, November.
    2. Joanicjusz Nazarko & Ewa Chodakowska & Łukasz Nazarko, 2022. "Evaluating the Transition of the European Union Member States towards a Circular Economy," Energies, MDPI, vol. 15(11), pages 1-24, May.
    3. Jorge Suárez-Macías & Juan María Terrones-Saeta & Francisco Javier Iglesias-Godino & Francisco Antonio Corpas-Iglesias, 2021. "Evaluation of Physical, Chemical, and Environmental Properties of Biomass Bottom Ash for Use as a Filler in Bituminous Mixtures," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    4. Mulian Zheng & Wang Chen & Xiaoyan Ding & Wenwu Zhang & Sixin Yu, 2021. "Comprehensive Life Cycle Environmental Assessment of Preventive Maintenance Techniques for Asphalt Pavement," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    5. Anthony Halog & Sandra Anieke, 2021. "A Review of Circular Economy Studies in Developed Countries and Its Potential Adoption in Developing Countries," Circular Economy and Sustainability, Springer, vol. 1(1), pages 209-230, June.
    6. Diana Eliza Godoi Bizarro & Zoran Steinmann & Isabel Nieuwenhuijse & Elisabeth Keijzer & Mara Hauck, 2021. "Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-Future Reduction Potential," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    7. Ambroise Lachat & Konstantinos Mantalovas & Tiffany Desbois & Oumaya Yazoghli-Marzouk & Anne-Sophie Colas & Gaetano Di Mino & Adélaïde Feraille, 2021. "From Buildings’ End of Life to Aggregate Recycling under a Circular Economic Perspective: A Comparative Life Cycle Assessment Case Study," Sustainability, MDPI, vol. 13(17), pages 1-25, August.
    8. Hayder Abbas Obaid & Tameem Mohammed Hashim & Ahmed Awad Matr Al-Abody & Mohammed Salah Nasr & Ghadeer Haider Abbas & Abdullah Musa Kadhim & Monower Sadique, 2022. "Properties of Modified Warm-Mix Asphalt Mixtures Containing Different Percentages of Reclaimed Asphalt Pavement," Energies, MDPI, vol. 15(20), pages 1-29, October.
    9. Bo Peng & Xiaoying Tong & Shijiang Cao & Wenying Li & Gui Xu, 2020. "Carbon Emission Calculation Method and Low-Carbon Technology for Use in Expressway Construction," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    10. Elisabete Nogueira & Sofia Gomes & João M. Lopes, 2023. "Triple Bottom Line, Sustainability, and Economic Development: What Binds Them Together? A Bibliometric Approach," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    11. Taísa Medina & João Luiz Calmon & Darli Vieira & Alencar Bravo & Thalya Vieira, 2023. "Life Cycle Assessment of Road Pavements That Incorporate Waste Reuse: A Systematic Review and Guidelines Proposal," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    12. Paolo Intini & Nicola Berloco & Pasquale Colonna & Vittorio Ranieri, 2020. "The Impact of Heavy Vehicle Traffic Trends on the Overdesign of Flexible Asphalt Pavements," Sustainability, MDPI, vol. 12(7), pages 1-13, March.
    13. Abdalrhman Milad & Ali Mohammed Babalghaith & Abdulnaser M. Al-Sabaeei & Anmar Dulaimi & Abdualmtalab Ali & Sajjala Sreedhar Reddy & Munder Bilema & Nur Izzi Md Yusoff, 2022. "A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement," IJERPH, MDPI, vol. 19(22), pages 1-23, November.
    14. Christina Plati & Maria Tsakoumaki, 2023. "Life Cycle Assessment (LCA) of Alternative Pavement Rehabilitation Solutions: A Case Study," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    15. Gabriella Buttitta & Gaspare Giancontieri & Tony Parry & Davide Lo Presti, 2023. "Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe," Sustainability, MDPI, vol. 15(19), pages 1-30, October.
    16. Samuel Y. O. Amakye & Samuel J. Abbey & Colin A. Booth & Jonathan Oti, 2022. "Performance of Sustainable Road Pavements Founded on Clay Subgrades Treated with Eco-Friendly Cementitious Materials," Sustainability, MDPI, vol. 14(19), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1912-:d:1040992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.