IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2688-d338606.html
   My bibliography  Save this article

The Impact of Heavy Vehicle Traffic Trends on the Overdesign of Flexible Asphalt Pavements

Author

Listed:
  • Paolo Intini

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, 70126 Bari, Italy)

  • Nicola Berloco

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, 70126 Bari, Italy)

  • Pasquale Colonna

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, 70126 Bari, Italy)

  • Vittorio Ranieri

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, 70126 Bari, Italy)

Abstract

Given their environmental impact, the careful design of asphalt pavements is crucial. Previous research has highlighted the influence of several parameters on the outputs of different pavement design methods. In this study, the focus is on heavy vehicle trends, considering both the percentage of heavy vehicles in the average traffic flow and its evolution over time, which is usually included as a growth factor in the design inputs. Since these factors are very often assumed to be based on old estimates, the first aim of this study was to update them by exploring a recent series of continuous data collected on the Italian motorway network and showing how to infer estimates from historical traffic data. Subsequently, the variability of these input factors is introduced in standard pavement design methods to assess their influence on the design process and to quantify the risk of overdesign. While the analysis of historical heavy vehicle traffic data may reveal an overall zero-growth traffic tendency, different scenarios should be considered and assessed in cost-benefit analyses given the not negligible influence of growth factors on pavement thicknesses. This influence is shown here in different simulated design conditions, with different initial traffic volumes, share of heavy vehicles, and resilient moduli.

Suggested Citation

  • Paolo Intini & Nicola Berloco & Pasquale Colonna & Vittorio Ranieri, 2020. "The Impact of Heavy Vehicle Traffic Trends on the Overdesign of Flexible Asphalt Pavements," Sustainability, MDPI, vol. 12(7), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2688-:d:338606
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2688/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2688/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filippo G. Praticò & Marinella Giunta & Marina Mistretta & Teresa Maria Gulotta, 2020. "Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    2. Santero, Nicholas J. & Masanet, Eric & Horvath, Arpad, 2011. "Life-cycle assessment of pavements. Part I: Critical review," Resources, Conservation & Recycling, Elsevier, vol. 55(9), pages 801-809.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mulian Zheng & Wang Chen & Xiaoyan Ding & Wenwu Zhang & Sixin Yu, 2021. "Comprehensive Life Cycle Environmental Assessment of Preventive Maintenance Techniques for Asphalt Pavement," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    2. Anne de Bortoli & Maxime Agez, 2023. "Environmentally-Extended Input-Output analyses efficiently sketch large-scale environmental transition plans -- illustration by Canada's road industry," Papers 2301.08302, arXiv.org.
    3. Giani, Martina Irene & Dotelli, Giovanni & Brandini, Nicolò & Zampori, Luca, 2015. "Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 224-238.
    4. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Anda Ligia Belc & Adrian Ciutina & Raluca Buzatu & Florin Belc & Ciprian Costescu, 2021. "Environmental Impact Assessment of Different Warm Mix Asphalts," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    6. Wang, Fusong & Xie, Jun & Wu, Shaopeng & Li, Jiashuo & Barbieri, Diego Maria & Zhang, Lei, 2021. "Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Munjed A. Maraqa & Francisco D. B. Albuquerque & Mohammed H. Alzard & Rezaul Chowdhury & Lina A. Kamareddine & Jamal El Zarif, 2021. "GHG Emission Reduction Opportunities for Road Projects in the Emirate of Abu Dhabi: A Scenario Approach," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    8. Giusi Perri & Manuel De Rose & Josipa Domitrović & Rosolino Vaiana, 2023. "CO 2 Impact Analysis for Road Embankment Construction: Comparison of Lignin and Lime Soil Stabilization Treatments," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    9. Jun Xie & Zhihu Wang & Fusong Wang & Shaopeng Wu & Zongwu Chen & Chao Yang, 2021. "The Life Cycle Energy Consumption and Emissions of Asphalt Pavement Incorporating Basic Oxygen Furnace Slag by Comparative Study," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    10. Husnain Arshad & Muhammad Jamaluddin Thaheem & Beenish Bakhtawar & Asheem Shrestha, 2021. "Evaluation of Road Infrastructure Projects: A Life Cycle Sustainability-Based Decision-Making Approach," Sustainability, MDPI, vol. 13(7), pages 1-26, March.
    11. Diana Eliza Godoi Bizarro & Zoran Steinmann & Isabel Nieuwenhuijse & Elisabeth Keijzer & Mara Hauck, 2021. "Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-Future Reduction Potential," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    12. Filippo G. Praticò & Marinella Giunta & Marina Mistretta & Teresa Maria Gulotta, 2020. "Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    13. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    14. Noori, Mehdi & Tatari, Omer & Nam, BooHyun & Golestani, Behnam & Greene, James, 2014. "A stochastic optimization approach for the selection of reflective cracking mitigation techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 367-378.
    15. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    16. Miatto, Alessio & Schandl, Heinz & Wiedenhofer, Dominik & Krausmann, Fridolin & Tanikawa, Hiroki, 2017. "Modeling material flows and stocks of the road network in the United States 1905–2015," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 168-178.
    17. Farina, Angela & Zanetti, Maria Chiara & Santagata, Ezio & Blengini, Gian Andrea, 2017. "Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 204-212.
    18. Harvey, John & Kendall, Alissa & Saboori, Arash, 2015. "The Role of Life Cycle Assessment in Reducing Greenhouse Gas Emissions from Road Construction and Maintenance," Institute of Transportation Studies, Working Paper Series qt89w5g2h6, Institute of Transportation Studies, UC Davis.
    19. Aurangzeb, Qazi & Al-Qadi, Imad L. & Ozer, Hasan & Yang, Rebekah, 2014. "Hybrid life cycle assessment for asphalt mixtures with high RAP content," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 77-86.
    20. Giuseppe Sollazzo & Sonia Longo & Maurizio Cellura & Clara Celauro, 2020. "Impact Analysis Using Life Cycle Assessment of Asphalt Production from Primary Data," Sustainability, MDPI, vol. 12(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2688-:d:338606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.