IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14892-d1260313.html
   My bibliography  Save this article

Life Cycle Assessment of Road Pavements That Incorporate Waste Reuse: A Systematic Review and Guidelines Proposal

Author

Listed:
  • Taísa Medina

    (Graduate Program in Civil Engineering, Department of Civil Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil)

  • João Luiz Calmon

    (Graduate Program in Civil Engineering, Department of Civil Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil)

  • Darli Vieira

    (Management Department, Université du Québec à Trois-Rivières, 3351, Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada)

  • Alencar Bravo

    (Management Department, Université du Québec à Trois-Rivières, 3351, Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada)

  • Thalya Vieira

    (Graduate Program in Civil Engineering, Department of Civil Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil)

Abstract

Life cycle assessment (LCA) is a methodology that has been widely used to evaluate the environmental impact of products and processes throughout entire life cycles. In this context, the reuse of waste in paved road construction is a practice that has received increasing attention as a sustainable alternative to solid waste disposal. This article presents a systematic review of existing studies on the LCA of paved roads that incorporate waste reuse and proposes a guideline for LCA in this context. Several criteria were analyzed in the articles, and the results showed that only 5% of the articles followed all the recommendations set out in ISO 14040. The proposed guideline aims to provide guidance for future research and includes recommendations for each of the steps involved in LCA, from defining the objectives and scope of the study to interpreting the results.

Suggested Citation

  • Taísa Medina & João Luiz Calmon & Darli Vieira & Alencar Bravo & Thalya Vieira, 2023. "Life Cycle Assessment of Road Pavements That Incorporate Waste Reuse: A Systematic Review and Guidelines Proposal," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14892-:d:1260313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filippo G. Praticò & Marinella Giunta & Marina Mistretta & Teresa Maria Gulotta, 2020. "Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    2. Mayara Sarisariyama Siverio Lima & Christina Makoundou & Cesare Sangiorgi & Florian Gschösser, 2022. "Life Cycle Assessment of Innovative Asphalt Mixtures Made with Crumb Rubber for Impact-Absorbing Pavements," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    3. Maria Chiara Zanetti & Angela Farina, 2022. "Life Cycle Risk Assessment Applied to Gaseous Emissions from Crumb Rubber Asphalt Pavement Construction," Sustainability, MDPI, vol. 14(9), pages 1-12, May.
    4. Giani, Martina Irene & Dotelli, Giovanni & Brandini, Nicolò & Zampori, Luca, 2015. "Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 224-238.
    5. Antonija Ana Wieser & Marco Scherz & Alexander Passer & Helmuth Kreiner, 2021. "Challenges of a Healthy Built Environment: Air Pollution in Construction Industry," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    6. Wesam Salah Alaloul & Muhammad Altaf & Muhammad Ali Musarat & Muhammad Faisal Javed & Amir Mosavi, 2021. "Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    7. Mayara S. Siverio Lima & Mohsen Hajibabaei & Sina Hesarkazzazi & Robert Sitzenfrei & Alexander Buttgereit & Cesar Queiroz & Viktors Haritonovs & Florian Gschösser, 2021. "Determining the Environmental Potentials of Urban Pavements by Applying the Cradle-to-Cradle LCA Approach for a Road Network of a Midscale German City," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    8. Diana Movilla-Quesada & Manuel Lagos-Varas & Aitor C. Raposeiras & Osvaldo Muñoz-Cáceres & Valerio C. Andrés-Valeri & Carla Aguilar-Vidal, 2021. "Analysis of Greenhouse Gas Emissions and the Environmental Impact of the Production of Asphalt Mixes Modified with Recycled Materials," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    9. Yang, Rebekah & Kang, Seunggu & Ozer, Hasan & Al-Qadi, Imad L., 2015. "Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 141-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Jamieson & Greg White & Luke Verstraten, 2024. "Principles for Incorporating Recycled Materials into Airport Pavement Construction for More Sustainable Airport Pavements," Sustainability, MDPI, vol. 16(17), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    2. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.
    3. Christina Plati & Maria Tsakoumaki, 2023. "Life Cycle Assessment (LCA) of Alternative Pavement Rehabilitation Solutions: A Case Study," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    4. Wesam Salah Alaloul & Muhammad Ali Musarat & Muhammad Babar Ali Rabbani & Qaiser Iqbal & Ahsen Maqsoom & Waqas Farooq, 2021. "Construction Sector Contribution to Economic Stability: Malaysian GDP Distribution," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    5. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    6. Mayara Sarisariyama Siverio Lima & Christina Makoundou & Cesare Sangiorgi & Florian Gschösser, 2022. "Life Cycle Assessment of Innovative Asphalt Mixtures Made with Crumb Rubber for Impact-Absorbing Pavements," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    7. Mario Rene Rivera Osorto & Michéle Dal Toé Casagrande, 2023. "Environmental Impact Comparison Analysis between a Traditional Hot Mixed Asphalt (HMA) and with the Addition of Recycled Post-Consumer Polyethylene Terephthalate (RPET) through the Life Cycle Assessme," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    8. Kamran Khan & Thomas Henschel, 2024. "LCT-Based Framework for the Assessment of Sustainability: From the Perspective of Literature Review," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 175(3), pages 1-20, December.
    9. Huang, T.Y. & Chiueh, P.T. & Lo, S.L., 2017. "Life-cycle environmental and cost impacts of reusing fly ash," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 255-260.
    10. Ángel Benigno González-Avilés & Carlos Pérez-Carramiñana & Antonio Galiano-Garrigós & Fernando Ibarra-Coves & Claudia Lozano-Romero, 2022. "Analysis of the Energy Efficiency of Le Corbusier’s Dwellings: The Cité Frugès, an Opportunity to Reuse Garden Cities Designed for Healthy and Working Life," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    11. Fusong Wang & Xiaoqing Li & Chao Huang & Wangwang Zhou & Dongxing Luan, 2024. "Integrative Benefits of Carbon Emission and Economic Cost for Self-Healing, Ultra-Thin Overlay Contained Steel Fiber," Sustainability, MDPI, vol. 16(21), pages 1-14, October.
    12. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    13. Asnake Adraro Angelo & Kotaro Sasai & Kiyoyuki Kaito, 2023. "Safety Integrated Network Level Pavement Maintenance Decision Support Framework as a Practical Solution in Developing Countries: The Case of Addis Ababa, Ethiopia," Sustainability, MDPI, vol. 15(11), pages 1-21, May.
    14. Mulian Zheng & Wang Chen & Xiaoyan Ding & Wenwu Zhang & Sixin Yu, 2021. "Comprehensive Life Cycle Environmental Assessment of Preventive Maintenance Techniques for Asphalt Pavement," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    15. Pamela Del Rosario & Marzia Traverso, 2023. "Towards Sustainable Roads: A Systematic Review of Triple-Bottom-Line-Based Assessment Methods," Sustainability, MDPI, vol. 15(21), pages 1-41, November.
    16. Mohammed Salah Nasr & Awham Jumah Salman & Rusul Jaber Ghayyib & Ali Shubbar & Shahad Al-Mamoori & Zainab Al-khafaji & Tameem Mohammed Hashim & Zaid Ali Hasan & Monower Sadique, 2023. "Effect of Clay Brick Waste Powder on the Fresh and Hardened Properties of Self-Compacting Concrete: State-of-the-Art and Life Cycle Assessment," Energies, MDPI, vol. 16(12), pages 1-23, June.
    17. Giusi Perri & Manuel De Rose & Josipa Domitrović & Rosolino Vaiana, 2023. "CO 2 Impact Analysis for Road Embankment Construction: Comparison of Lignin and Lime Soil Stabilization Treatments," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    18. Denner Deda & Helena Gervásio & Margarida J. Quina, 2023. "Bibliometric Analysis and Benchmarking of Life Cycle Assessment of Higher Education Institutions," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    19. Diana Eliza Godoi Bizarro & Zoran Steinmann & Isabel Nieuwenhuijse & Elisabeth Keijzer & Mara Hauck, 2021. "Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-Future Reduction Potential," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    20. Michael R. Gruber & Bernhard Hofko, 2023. "Life Cycle Assessment of Greenhouse Gas Emissions from Recycled Asphalt Pavement Production," Sustainability, MDPI, vol. 15(5), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14892-:d:1260313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.