IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16670-d1296496.html
   My bibliography  Save this article

Methodology for Assessing Power Needs for Onshore Power Supply in Maritime Ports

Author

Listed:
  • Marcelo Amaral

    (NOVA School of Science and Technology, Nova University Lisbon, 2829-516 Caparica, Portugal)

  • Nuno Amaro

    (NOVA School of Science and Technology, Nova University Lisbon, 2829-516 Caparica, Portugal
    Centre of Technology and Systems (UNINOVA-CTS), Associated Lab of Intelligent Systems (LASI), 2829-516 Caparica, Portugal)

  • Pedro Arsénio

    (E-REDES, 1070-157 Lisbon, Portugal)

Abstract

Maritime ports represent an important ecosystem for pollutant emissions and, considering the ongoing energy transition, need to adopt new solutions to mitigate current emission levels. These emissions are partially avoidable if ships and vessels docked at the port use electric energy to feed their power needs instead of using their internal combustion engines. In Europe, there is an ongoing discussion on including such emissions in the European Union Emissions Trading System, which will represent added costs for maritime operators. Onshore power supply systems can contribute to the ongoing energy transition by allowing the use of electric power to feed docked ships. As a first step to contribute to the development of onshore power supply solutions, it is necessary to evaluate the added power needs that these systems would represent for the port. This paper presents a methodology that allows port operators to verify, straightforwardly and transparently, their power needs for onshore power supply applications. The methodology is based on the historical data of docked ships at the port or quay level and provides an energy analysis of each type of vessel to determine the power to be installed at the port so that it is possible to supply energy to different types of ships and vessels simultaneously. Additionally, the implemented methodology provides economic and technical decision support factors by comparing the fuel costs with electric power costs, assessing the potential for this transition to onshore power supply. The methodology is validated using a real case study for the Port of Lisbon, and obtained results demonstrate the potential for the installation of an onshore power supply in medium- to large-dimension maritime ports.

Suggested Citation

  • Marcelo Amaral & Nuno Amaro & Pedro Arsénio, 2023. "Methodology for Assessing Power Needs for Onshore Power Supply in Maritime Ports," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16670-:d:1296496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16670/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16670/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yue & Liang, Chengji & Shi, Jian & Lim, Gino & Wu, Yiwei, 2022. "Optimal Port Microgrid Scheduling Incorporating Onshore Power Supply and Berth Allocation Under Uncertainty," Applied Energy, Elsevier, vol. 313(C).
    2. Gutierrez-Romero, José E. & Esteve-Pérez, Jerónimo & Zamora, Blas, 2019. "Implementing Onshore Power Supply from renewable energy sources for requirements of ships at berth," Applied Energy, Elsevier, vol. 255(C).
    3. Wang, Lifen & Liang, Chengji & Shi, Jian & Molavi, Anahita & Lim, Gino & Zhang, Yue, 2021. "A bilevel hybrid economic approach for optimal deployment of onshore power supply in maritime ports," Applied Energy, Elsevier, vol. 292(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yue & Liang, Chengji & Shi, Jian & Lim, Gino & Wu, Yiwei, 2022. "Optimal Port Microgrid Scheduling Incorporating Onshore Power Supply and Berth Allocation Under Uncertainty," Applied Energy, Elsevier, vol. 313(C).
    2. Abu Bakar, Nur Najihah & Bazmohammadi, Najmeh & Vasquez, Juan C. & Guerrero, Josep M., 2023. "Electrification of onshore power systems in maritime transportation towards decarbonization of ports: A review of the cold ironing technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Seyed Behbood Issa Zadeh & José Santos López Gutiérrez & M. Dolores Esteban & Gonzalo Fernández-Sánchez & Claudia Lizette Garay-Rondero, 2023. "Scope of the Literature on Efforts to Reduce the Carbon Footprint of Seaports," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
    4. Ang Yang & Xiangyu Meng & He He & Liang Wang & Jing Gao, 2022. "Towards Optimized ARMGs’ Low-Carbon Transition Investment Decision Based on Real Options," Energies, MDPI, vol. 15(14), pages 1-16, July.
    5. Zejun Tong & Chun Zhang & Xiaotai Wu & Pengcheng Gao & Shuang Wu & Haoyu Li, 2023. "Economic Optimization Control Method of Grid-Connected Microgrid Based on Improved Pinning Consensus," Energies, MDPI, vol. 16(3), pages 1-31, January.
    6. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    7. Molavi, Anahita & Lim, Gino J. & Shi, Jian, 2020. "Stimulating sustainable energy at maritime ports by hybrid economic incentives: A bilevel optimization approach," Applied Energy, Elsevier, vol. 272(C).
    8. Wang, Lifen & Liang, Chengji & Shi, Jian & Molavi, Anahita & Lim, Gino & Zhang, Yue, 2021. "A bilevel hybrid economic approach for optimal deployment of onshore power supply in maritime ports," Applied Energy, Elsevier, vol. 292(C).
    9. Dong-Ping Song, 2024. "A Literature Review of Seaport Decarbonisation: Solution Measures and Roadmap to Net Zero," Sustainability, MDPI, vol. 16(4), pages 1-32, February.
    10. Jon Williamsson & Nicole Costa & Vendela Santén & Sara Rogerson, 2022. "Barriers and Drivers to the Implementation of Onshore Power Supply—A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    11. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    12. Alexander Micallef & Josep M. Guerrero & Juan C. Vasquez, 2023. "New Horizons for Microgrids: From Rural Electrification to Space Applications," Energies, MDPI, vol. 16(4), pages 1-25, February.
    13. Chengji Liang & Yue Zhang & Liang Dong, 2022. "A Three Stage Optimal Scheduling Algorithm for AGV Route Planning Considering Collision Avoidance under Speed Control Strategy," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    14. Jennifer L. MacNeil & Michelle Adams & Tony R. Walker, 2021. "Development of Framework for Improved Sustainability in the Canadian Port Sector," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    15. Chiara Dall’Armi & Davide Pivetta & Rodolfo Taccani, 2023. "Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects," Energies, MDPI, vol. 16(4), pages 1-34, February.
    16. Bakar, Nur Najihah Abu & Bazmohammadi, Najmeh & Çimen, Halil & Uyanik, Tayfun & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Data-driven ship berthing forecasting for cold ironing in maritime transportation," Applied Energy, Elsevier, vol. 326(C).
    17. Xianfeng Xu & Ke Wang & Yong Lu & Yunbo Tian & Liqun Hu & Ming Zhong, 2023. "Research on Performance Evaluation Index System and Assessment Methods for Microgrid Operation in the Port Area," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    18. Nur Najihah Abu Bakar & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Yun Yu & Abdullah Abusorrah & Yusuf A. Al-Turki, 2021. "A Review of the Conceptualization and Operational Management of Seaport Microgrids on the Shore and Seaside," Energies, MDPI, vol. 14(23), pages 1-31, November.
    19. Stolz, B. & Held, M. & Georges, G. & Boulouchos, K., 2021. "The CO2 reduction potential of shore-side electricity in Europe," Applied Energy, Elsevier, vol. 285(C).
    20. Anthony Roy & François Auger & Jean-Christophe Olivier & Emmanuel Schaeffer & Bruno Auvity, 2020. "Design, Sizing, and Energy Management of Microgrids in Harbor Areas: A Review," Energies, MDPI, vol. 13(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16670-:d:1296496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.