IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15972-d1280845.html
   My bibliography  Save this article

Ecological Risk Zoning Control in Zhundong Economic Development Zone Based on Landscape Pattern Changes

Author

Listed:
  • Bin Ou

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Abudukeyimu Abulizi

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Abudoukeremujiang Zayiti

    (College of Ecology and Environment, Xinjiang University, Urumqi 830046, China)

  • Jiao Jiang

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Adila Akbar

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Tingting Yu

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

Abstract

The Zhundong coalfield in Xinjiang, China, is rich in resources and has great significance to the development of the Xinjiang region, but its local ecological environment is fragile and its climate is particularly dry, so mining is very likely to introduce a series of ecological risks; there is an urgent need for us to provide scientific and feasible guidance for the conservation and development of coal resources in this region. Therefore, this paper is based on the land-use-type data concerning the Zhundong Economic and Technological Development Zone from 2000 to 2020, exploring the land use change characteristics in the Zhundong area during these 20 years and calculating the ecological risk index of each risky district according to an ecological risk index model. Afterward, this article uses kriging interpolation to carry out a risk classification analysis to explore changes in ecological risk in the Zhundong area during the last 20 years and to put forward ecological risk partition and control measures for areas of different levels of risk. Our research shows the following features: (1) The land use type in the Zhundong area changed obviously from 2000 to 2020, in which unused land has always occupied most of the area of the Zhundong coalfield. Grassland was the land use type with the greatest area transferred, 211,412.35 hm 2 , accounting for 68.11% of the total transferred area, and it was mainly converted into unused and construction land. (2) In the last 20 years, the Zhundong coalfield has been dominated by higher-risk and high-risk areas, with obvious changes in the distribution of ecological risk levels. The low-risk, medium-risk, and higher-risk areas in the research zone have decreased and then increased; the lower-risk area has declined yearly, and the high-risk area has increased and then declined. Furthermore, overall, the ecological environment has transformed toward good condition. (3) High-risk and higher-risk areas still account for most of the research zone, and there is an urgent need for scientific and feasible programs to carry out ecological restoration in areas with different ecological risk levels to avoid further deterioration of the local environment.

Suggested Citation

  • Bin Ou & Abudukeyimu Abulizi & Abudoukeremujiang Zayiti & Jiao Jiang & Adila Akbar & Tingting Yu, 2023. "Ecological Risk Zoning Control in Zhundong Economic Development Zone Based on Landscape Pattern Changes," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15972-:d:1280845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donglin Dong & Wenjie Sun & Zhaochang Zhu & Sha Xi & Gang Lin, 2013. "Groundwater Risk Assessment of the Third Aquifer in Tianjin City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3179-3190, June.
    2. Dengyu Yin & Xiaoshun Li & Guie Li & Jian Zhang & Haochen Yu, 2020. "Spatio-Temporal Evolution of Land Use Transition and Its Eco-Environmental Effects: A Case Study of the Yellow River Basin, China," Land, MDPI, vol. 9(12), pages 1-24, December.
    3. Litang Yao & Xuebin Zhang & Jun Luo & Xuehong Li, 2023. "Identification of Ecological Management Zoning on Arid Region from the Perspective of Risk Assessment," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    4. Sizheng Li & Liuzhu Wang & Sheng Zhao & Feng Gui & Qun Le, 2023. "Landscape Ecological Risk Assessment of Zhoushan Island Based on LULC Change," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaotao Xu & Peng Li & Jinjin Pan & Yi Zhang & Xiaohu Dang & Xiaoshu Cao & Junfang Cui & Zhi Yang, 2022. "Eco-Environmental Effects and Spatial Heterogeneity of “Production-Ecology-Living” Land Use Transformation: A Case Study for Ningxia, China," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    2. Fawen Li & Yong Zhao & Ping Feng & Wei Zhang & Jiale Qiao, 2015. "Risk Assessment of Groundwater and its Application. Part I: Risk Grading Based on the Functional Zoning of Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2697-2714, June.
    3. Haochen Yu & Jiu Huang & Chuning Ji & Zi’ao Li, 2021. "Construction of a Landscape Ecological Network for a Large-Scale Energy and Chemical Industrial Base: A Case Study of Ningdong, China," Land, MDPI, vol. 10(4), pages 1-24, March.
    4. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    5. Bunga Ludmila Rendrarpoetri & Ernan Rustiadi & Akhmad Fauzi & Andrea Emma Pravitasari, 2024. "Sustainability Assessment of the Upstream Bengawan Solo Watershed in Wonogiri Regency, Central Java Province, Indonesia," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    6. Xiaoping Zhou & Duanshuai Shen & Xiaokun Gu, 2022. "Influences of Land Policy on Urban Ecological Corridors Governance: A Case Study from Shanghai," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
    7. Bowen Zhang & Ying Wang & Jiangfeng Li & Liang Zheng, 2022. "Degradation or Restoration? The Temporal-Spatial Evolution of Ecosystem Services and Its Determinants in the Yellow River Basin, China," Land, MDPI, vol. 11(6), pages 1-20, June.
    8. Haipeng Niu & Ran An & Dongyang Xiao & Mengmeng Liu & Xiaoming Zhao, 2022. "Estimation of Ecosystem Services Value at a Basin Scale Based on Modified Equivalent Coefficient: A Case Study of the Yellow River Basin (Henan Section), China," IJERPH, MDPI, vol. 19(24), pages 1-23, December.
    9. Ge Song & Hongmei Zhang, 2021. "Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China," Land, MDPI, vol. 10(2), pages 1-19, January.
    10. Bao Wenchao & Chen Beier & Yan Minghui, 2024. "Analysis of Multi-Factor Dynamic Coupling and Government Intervention Level for Urbanization in China: Evidence from the Yangtze River Economic Belt," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 18(1), pages 1-18, January.
    11. Fawen Li & Jiale Qiao & Yong Zhao & Wei Zhang, 2014. "Risk Assessment of Groundwater and its Application. Part II: Using a Groundwater Risk Maps to Determine Control Levels of the Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4875-4893, October.
    12. Yu Chen & Xuyang Su & Xuekai Wang, 2022. "Spatial Transformation Characteristics and Conflict Measurement of Production-Living-Ecology: Evidence from Urban Agglomeration of China," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    13. Hualou Long & Xiangbin Kong & Shougeng Hu & Yurui Li, 2021. "Land Use Transitions under Rapid Urbanization: A Perspective from Developing China," Land, MDPI, vol. 10(9), pages 1-9, September.
    14. Meijing Chen & Zhongke Bai & Qingri Wang & Zeyu Shi, 2021. "Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project," Land, MDPI, vol. 10(8), pages 1-20, July.
    15. Quanfeng Li & Lu Wang & Guoming Du & Bonoua Faye & Yunkai Li & Jicheng Li & Wei Liu & Shijin Qu, 2022. "Dynamic Variation of Ecosystem Services Value under Land Use/Cover Change in the Black Soil Region of Northeastern China," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    16. Kai Li & Beiying Zhang & Weidong Xiao & Yong Lu, 2022. "Land Use Transformation Based on Production−Living−Ecological Space and Associated Eco-Environment Effects: A Case Study in the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 11(7), pages 1-15, July.
    17. Bo Liu & Libo Pan & Yue Qi & Xiao Guan & Junsheng Li, 2021. "Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its Impact on the Ecosystem Services," Land, MDPI, vol. 10(10), pages 1-23, October.
    18. Ruifang Deng & Xue Ding & Jinliang Wang, 2023. "Landscape Ecological Risk Assessment and Spatial Pattern Evolution Analysis of the Central Yunnan Urban Agglomeration from 1995 to 2020 Based on Land Use/Cover Change," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    19. Li, Xuehong & Zhang, Xuebin & Feng, Haoyuan & Li, Yixia & Yu, Jiale & Liu, Yanni & Du, Hucheng, 2024. "Dynamic evolution and simulation of habitat quality in arid regions: A case study of the Hexi region, China," Ecological Modelling, Elsevier, vol. 493(C).
    20. Jinfeng Xie & Jun Zhao & Sheshu Zhang & Ziyun Sun, 2023. "Optimal Scale and Scenario Simulation Analysis of Landscape Ecological Risk Assessment in the Shiyang River Basin," Sustainability, MDPI, vol. 15(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15972-:d:1280845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.