IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15717-d1275926.html
   My bibliography  Save this article

Enhancing Carbon Capture and Storage Deployment in the EU: A Sectoral Analysis of a Ton-Based Incentive Strategy

Author

Listed:
  • Filip Vodopić

    (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia)

  • Domagoj Vulin

    (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia)

  • Daria Karasalihović Sedlar

    (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia)

  • Lucija Jukić

    (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia)

Abstract

The EU considers carbon capture and storage (CCS) technology as an option for achieving climate goals, but its cost remains appreciable. Therefore, the purpose of this research was to investigate the implementation of a ton-based incentive system for CCS in the EU using Croatia as an example based on an analysis of the existing legislative framework in the EU and relevant tax credit provisions in the USA. A novel methodology for the design of the incentive system is presented in the form of partial allocation of the state’s auction revenues from the EU emissions trading system (ETS) into the CCS fund for five years. The CCS fund assets then incentivize the capture site for 10 years. The incentives are determined for each emitter in cement, electricity, paper and pulp, glass, oil refining, and petrochemical sectors based on varying European Union allowance (EUA) prices, CCS fund sizes, and CO 2 emission scenarios. In addition to designing the methodology, a novel method for forecasting CO 2 emissions is applied using geometric Brownian motion. The calculated incentives are categorized as underperforming, optimal, or overperforming, with upper and lower limits set to 80 and 10 EUR/t. The results are optimistic, since all sectors can be efficiently incentivized within the defined boundaries, meaning that the incentive system can be applied to all member states. The contracting of the incentives is proposed through carbon contracts for difference to avoid irregularities. Also, regulatory amendments are proposed so that emitters with emissions higher than 100 kt would have to consider CCS. Finally, the contributions are presented by proving the feasibility of the incentive system together with demonstrating its applicability to all member states.

Suggested Citation

  • Filip Vodopić & Domagoj Vulin & Daria Karasalihović Sedlar & Lucija Jukić, 2023. "Enhancing Carbon Capture and Storage Deployment in the EU: A Sectoral Analysis of a Ton-Based Incentive Strategy," Sustainability, MDPI, vol. 15(22), pages 1-34, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15717-:d:1275926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    2. Mesut Doğan & Sutbayeva Raikhan & Nurbossynova Zhanar & Bodaukhan Gulbagda, 2023. "Analysis of Dynamic Connectedness Relationships among Clean Energy, Carbon Emission Allowance, and BIST Indexes," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    3. Sara Yasemi & Yasin Khalili & Ali Sanati & Mohammadreza Bagheri, 2023. "Carbon Capture and Storage: Application in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(19), pages 1-32, October.
    4. Doğan, Mesut & Raikhan, Sutbayeva & Zhanar, Nurbossynova & Gulbagda, Bodaukhan, 2023. "Analysis of Dynamic Connectedness Relationships among Clean Energy, Carbon Emission Allowance, and BIST Indexes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(7), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polat, Onur & Ozcan, Burcu & Ertuğrul, Hasan Murat & Atılgan, Emre & Özün, Alper, 2024. "Fintech: A Conduit for sustainability and renewable energy? Evidence from R2 connectedness analysis," Resources Policy, Elsevier, vol. 94(C).
    2. Hleil Alrweili & Ousama Ben-Salha, 2024. "Dynamic Asymmetric Volatility Spillover and Connectedness Network Analysis among Sectoral Renewable Energy Stocks," Mathematics, MDPI, vol. 12(12), pages 1-20, June.
    3. Jingyi Ji & Chao Li & Xinyi Ye & Yuelin Song & Jiehua Lv, 2023. "Analysis of the Spatial and Temporal Evolution of China’s Energy Carbon Emissions, Driving Mechanisms, and Decoupling Levels," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
    4. Assad Ullah & Murat Tekbaş & Mesut Doğan, 2023. "The Impact of Economic Growth, Natural Resources, Urbanization and Biocapacity on the Ecological Footprint: The Case of Turkey," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    5. Stamatios K. Chrysikopoulos & Panos T. Chountalas & Dimitrios A. Georgakellos & Athanasios G. Lagodimos, 2024. "Decarbonization in the Oil and Gas Sector: The Role of Power Purchase Agreements and Renewable Energy Certificates," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
    6. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    7. Shenghao Feng & Xiujian Peng & Philip Adams, 2021. "Energy and Economic Implications of Carbon Neutrality in China -- A Dynamic General Equilibrium Analysis," Centre of Policy Studies/IMPACT Centre Working Papers g-318, Victoria University, Centre of Policy Studies/IMPACT Centre.
    8. Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Maxwell Brown & Matthew Irish & Daniel Steinberg & Tamar Moss & Daniel P. Cherney & Travis Shultz & David Morgan & Alexander Zoelle & Thomas Schmitt, 2024. "Representing Carbon Dioxide Transport and Storage Network Investments within Power System Planning Models," Energies, MDPI, vol. 17(15), pages 1-24, July.
    10. Miao, Yuang & Lu, Huixia & Cui, Shizhang & Zhang, Xu & Zhang, Yusheng & Song, Xinwang & Cheng, Haiying, 2024. "CO2 emissions change in Tianjin: The driving factors and the role of CCS," Applied Energy, Elsevier, vol. 353(PA).
    11. Beccarello, Massimo & Di Foggia, Giacomo, 2023. "Meeting decarbonization targets: Techno-economic insights from the Italian scenario," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2.
    12. Yidi Wan & Chengzao Jia & Wen Zhao & Lin Jiang & Zhuxin Chen, 2023. "Micro-Scale Lattice Boltzmann Simulation of Two-Phase CO 2 –Brine Flow in a Tighter REV Extracted from a Permeable Sandstone Core: Implications for CO 2 Storage Efficiency," Energies, MDPI, vol. 16(3), pages 1-26, February.
    13. Seyed Mehdi Alizadeh & Yasin Khalili & Mohammad Ahmadi, 2024. "Comprehensive Review of Carbon Capture and Storage Integration in Hydrogen Production: Opportunities, Challenges, and Future Perspectives," Energies, MDPI, vol. 17(21), pages 1-35, October.
    14. Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N., 2024. "Zero carbon emission CCGT power plant with integrated solid fuel gasification," Energy, Elsevier, vol. 294(C).
    15. Gunawan, Tubagus Aryandi & Luo, Hongxi & Greig, Chris & Larson, Eric, 2024. "Shared CO₂ capture, transport, and storage for decarbonizing industrial clusters," Applied Energy, Elsevier, vol. 359(C).
    16. Paltsev, Sergey & Gurgel, Angelo & Morris, Jennifer & Chen, Henry & Dey, Subhrajit & Marwah, Sumita, 2022. "Economic analysis of the hard-to-abate sectors in India," Energy Economics, Elsevier, vol. 112(C).
    17. Massimo Beccarello & Giacomo Di Foggia, 2023. "Review and Perspectives of Key Decarbonization Drivers to 2030," Energies, MDPI, vol. 16(3), pages 1-13, January.
    18. Alberto Maria Gambelli, 2023. "CCUS Strategies as Most Viable Option for Global Warming Mitigation," Energies, MDPI, vol. 16(10), pages 1-4, May.
    19. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
    20. Kawai, Eiji & Ozawa, Akito & Leibowicz, Benjamin D., 2022. "Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15717-:d:1275926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.