IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6339-d1442011.html
   My bibliography  Save this article

Decarbonization in the Oil and Gas Sector: The Role of Power Purchase Agreements and Renewable Energy Certificates

Author

Listed:
  • Stamatios K. Chrysikopoulos

    (Department of Business Administration, University of Piraeus, GR-18534 Piraeus, Greece)

  • Panos T. Chountalas

    (Department of Business Administration, University of Piraeus, GR-18534 Piraeus, Greece)

  • Dimitrios A. Georgakellos

    (Department of Business Administration, University of Piraeus, GR-18534 Piraeus, Greece)

  • Athanasios G. Lagodimos

    (Department of Business Administration, University of Piraeus, GR-18534 Piraeus, Greece)

Abstract

This study examines the adoption of Power Purchase Agreements (PPAs) and Renewable Energy Certificates (RECs) as strategic tools for decarbonization in the oil and gas sector. Focusing on the 21 largest oil and gas companies across Europe, North America, and South America, the analysis reveals varied adoption rates and strategic emphases between regions. European companies exhibit robust integration of PPAs and RECs to expand renewable energy capacities and reduce emissions, aligning closely with aggressive EU climate policies. In contrast, American companies show a cautious approach, focusing more on emission reduction from existing operations than on renewable expansions. The study’s findings indicate that, while both regions are advancing in their decarbonization efforts, European companies are leading with more defined renewable energy targets and comprehensive low-carbon strategies. This research contributes to understanding how different regulatory environments and market conditions influence corporate strategies towards sustainable energy transitions in traditionally hard-to-abate industries.

Suggested Citation

  • Stamatios K. Chrysikopoulos & Panos T. Chountalas & Dimitrios A. Georgakellos & Athanasios G. Lagodimos, 2024. "Decarbonization in the Oil and Gas Sector: The Role of Power Purchase Agreements and Renewable Energy Certificates," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6339-:d:1442011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Talat S. Genc & Stephen Kosempel, 2023. "Energy Transition and the Economy: A Review Article," Energies, MDPI, vol. 16(7), pages 1-26, March.
    2. Natalya Romasheva & Alina Cherepovitsyna, 2023. "Renewable Energy Sources in Decarbonization: The Case of Foreign and Russian Oil and Gas Companies," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
    3. Agnes Horvath & Adrienn Takacsne Papp & L szl Molnar & Katalin Liptak & Zoltan Musinszki & Klara Szucsne Markovics, 2023. "Climate and Energy Issues of Energy-Intensive Sectors," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 813-813, August.
    4. Kate Konschnik & Sarah Marie Jordaan, 2018. "Reducing fugitive methane emissions from the North American oil and gas sector: a proposed science-policy framework," Climate Policy, Taylor & Francis Journals, vol. 18(9), pages 1133-1151, October.
    5. Marios Stanitsas & Konstantinos Kirytopoulos, 2023. "Sustainable Energy Strategies for Power Purchase Agreements (PPAs)," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    6. Marcin Pluta & Artur Wyrwa & Janusz Zyśk & Wojciech Suwała & Maciej Raczyński, 2023. "Scenario Analysis of the Development of the Polish Power System towards Achieving Climate Neutrality in 2050," Energies, MDPI, vol. 16(16), pages 1-25, August.
    7. Anton Lisin & Tomonobu Senjyu, 2021. "Renewable Energy Transition: Evidence from Spillover Effects in Exchange-Traded Funds," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 184-190.
    8. Simone Tagliapietra & Georg Zachmann, 2018. "Addressing Europe’s failure to clean up the transport sector," Bruegel Policy Brief 25038, Bruegel.
    9. Satu Lipiäinen & Eeva-Lotta Apajalahti & Esa Vakkilainen, 2023. "Decarbonization Prospects for the European Pulp and Paper Industry: Different Development Pathways and Needed Actions," Energies, MDPI, vol. 16(2), pages 1-18, January.
    10. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Sara Yasemi & Yasin Khalili & Ali Sanati & Mohammadreza Bagheri, 2023. "Carbon Capture and Storage: Application in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(19), pages 1-32, October.
    12. Alexey Cherepovitsyn & Aleksei Kazanin & Evgeniya Rutenko, 2023. "Strategic Priorities for Green Diversification of Oil and Gas Companies," Energies, MDPI, vol. 16(13), pages 1-17, June.
    13. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    14. Xiqiang Xia & Junhu Ruan & Zhiru Juan & Yan Shi & Xuping Wang & Felix T. S. Chan, 2018. "Upstream-Downstream Joint Carbon Reduction Strategies Based on Low-Carbon Promotion," IJERPH, MDPI, vol. 15(7), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egerer, Jonas & Farhang-Damghani, Nima & Grimm, Veronika & Runge, Philipp, 2024. "The industry transformation from fossil fuels to hydrogen will reorganize value chains: Big picture and case studies for Germany," Applied Energy, Elsevier, vol. 358(C).
    2. Tatyana Semenova & Juan Yair Martínez Santoyo, 2023. "Economic Strategy for Developing the Oil Industry in Mexico by Incorporating Environmental Factors," Sustainability, MDPI, vol. 16(1), pages 1-38, December.
    3. Lehua Gao & Yue Zhang & Kejie Lu, 2024. "A Study on the Driving Mechanism of Chinese Oil and Gas Companies’ Transition to Renewable Energy," Sustainability, MDPI, vol. 16(18), pages 1-24, September.
    4. Alexey Cherepovitsyn & Aleksei Kazanin & Evgeniya Rutenko, 2023. "Strategic Priorities for Green Diversification of Oil and Gas Companies," Energies, MDPI, vol. 16(13), pages 1-17, June.
    5. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    6. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Mayyas Alsalman & Vian Ahmed & Zied Bahroun & Sara Saboor, 2023. "An Economic Analysis of Solar Energy Generation Policies in the UAE," Energies, MDPI, vol. 16(7), pages 1-25, March.
    8. Georgios Archimidis Tsalidis & Maria Batsioula & George F. Banias & Evina Katsou, 2024. "A Review Analysis of Electricity Generation Studies with Social Life Cycle Assessment," Energies, MDPI, vol. 17(12), pages 1-13, June.
    9. Lucey, Brian & Yahya, Muhammad & Khoja, Layla & Uddin, Gazi Salah & Ahmed, Ali, 2024. "Interconnectedness and risk profile of hydrogen against major asset classes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    11. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
    12. Pratik Mochi & Kartik Pandya & Joao Soares & Zita Vale, 2023. "Optimizing Power Exchange Cost Considering Behavioral Intervention in Local Energy Community," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
    13. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    14. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    15. Karmegam Dhanabalan & Muthukumar Perumalsamy & Ganesan Sriram & Nagaraj Murugan & Shalu & Thangarasu Sadhasivam & Tae Hwan Oh, 2023. "Metal–Organic Framework (MOF)-Derived Catalyst for Oxygen Reduction Reaction (ORR) Applications in Fuel Cell Systems: A Review of Current Advancements and Perspectives," Energies, MDPI, vol. 16(13), pages 1-19, June.
    16. Genc, Talat S., 2024. "Energy Transition and the role of new natural gas turbines for power production: The case of GT11N2 M generators," Energy Economics, Elsevier, vol. 131(C).
    17. Landon Yoder & Alora Cain & Ananya Rao & Nathaniel Geiger & Ben Kravitz & Mack Mercer & Deidra Miniard & Sangeet Nepal & Thomas Nunn & Mary Sluder & Grace Weiler & Shahzeen Z. Attari, 2024. "Muddling through Climate Change: A Qualitative Exploration of India and U.S. Climate Experts’ Perspectives on Solutions, Pathways, and Barriers," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
    18. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    19. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    20. Józef Paska & Tomasz Surma & Paweł Terlikowski & Krzysztof Zagrajek, 2020. "Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy," Energies, MDPI, vol. 13(16), pages 1-31, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6339-:d:1442011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.