IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13511-d1236425.html
   My bibliography  Save this article

Optimization of the Liquid Desiccant Cooling Systems in Hot and Humid Areas

Author

Listed:
  • Yanling Zhang

    (School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Hong Kong, China
    Renewable Energy Research Group, Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Hao Zhang

    (School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Hong Kong, China)

  • Hongxing Yang

    (Renewable Energy Research Group, Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Yi Chen

    (College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China)

  • Chun Wah Leung

    (School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Hong Kong, China)

Abstract

Air-conditioning systems in hot and humid regions account for over 50% of total energy usage. Integrating an indirect evaporative cooling ( I E C ) and a liquid desiccant dehumidifier ( L D D ) as the liquid desiccant cooling system ( L D C S ) presents an energy-saving and emission-reducing solution to replace traditional mechanical vapor compression refrigeration ( M V C R ) systems. This integration overcomes the regional limitations of IEC in hot and humid areas. The newly developed L D C S uses exhaust air as the working air source and solar energy as the heat source for desiccant solution regeneration. This study aims to develop an empirical model for the outlet parameters of the L D C S , propose an optimization strategy for its operating parameters, and assess the potential and energy performance through parameter analysis and multifactor optimization. By conducting sensitivity analysis and optimizing six critical parameters based on a response surface model ( R S M ), the system outlet temperature, relative humidity, and coefficient of performance ( C O P ) are improved as the optimization objectives. The regional capability is demonstrated in three selected hot and humid cities. The results indicate that the L D C S can significantly increase the C O P by 57.3%. Additionally, it can meet the dehumidification demand when operating with 25% of the air extracted in the R I E C during months with high humidity and temperature. This study will facilitate the application of I E C and L D D technologies, guide the design and operation scheme of the system, and promote energy-saving and emission-reducing solutions in hot and humid regions.

Suggested Citation

  • Yanling Zhang & Hao Zhang & Hongxing Yang & Yi Chen & Chun Wah Leung, 2023. "Optimization of the Liquid Desiccant Cooling Systems in Hot and Humid Areas," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13511-:d:1236425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aiguo Zhu & Haider Ali & Muhammad Ishaq & Muhammad Sheraz Junaid & Jawad Raza & Muhammad Amjad, 2022. "Numerical Study of Heat and Mass Transfer for Williamson Nanofluid over Stretching/Shrinking Sheet along with Brownian and Thermophoresis Effects," Energies, MDPI, vol. 15(16), pages 1-21, August.
    2. Kim, Min-Hwi & Park, Jun-Seok & Jeong, Jae-Weon, 2013. "Energy saving potential of liquid desiccant in evaporative-cooling-assisted 100% outdoor air system," Energy, Elsevier, vol. 59(C), pages 726-736.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    2. Park, Joon-Young & Kim, Beom-Jun & Yoon, Soo-Yeol & Byon, Yoo-Suk & Jeong, Jae-Weon, 2019. "Experimental analysis of dehumidification performance of an evaporative cooling-assisted internally cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 235(C), pages 177-185.
    3. Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
    4. Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2019. "Adaptive full-range decoupled ventilation strategy and air-conditioning systems for cleanrooms and buildings requiring strict humidity control and their performance evaluation," Energy, Elsevier, vol. 168(C), pages 883-896.
    5. Min-Hwi Kim & Joon-Young Park & Jae-Weon Jeong, 2017. "Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System," Energies, MDPI, vol. 10(9), pages 1-19, September.
    6. Mahmoud Khaled & Mostafa Mortada & Jalal Faraj & Khaled Chahine & Thierry Lemenand & Haitham S. Ramadan, 2022. "Effect of Airflow Non-Uniformities on the Thermal Performance of Water–Air Heat Exchangers—Experimental Study and Analysis," Energies, MDPI, vol. 15(21), pages 1-14, October.
    7. Shiying Li & Jae-Weon Jeong, 2018. "Energy Performance of Liquid Desiccant and Evaporative Cooling-Assisted 100% Outdoor Air Systems under Various Climatic Conditions," Energies, MDPI, vol. 11(6), pages 1-22, May.
    8. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Zhao, Lei, 2015. "Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm," Energy, Elsevier, vol. 82(C), pages 939-948.
    9. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    10. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    11. Su Liu & Jae-Weon Jeong, 2020. "Energy Performance Comparison between Two Liquid Desiccant and Evaporative Cooling-Assisted Air Conditioning Systems," Energies, MDPI, vol. 13(3), pages 1-22, January.
    12. Kim, Min-Hwi & Dong, Hae-Won & Park, Joon-Young & Jeong, Jae-Weon, 2016. "Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell," Applied Energy, Elsevier, vol. 180(C), pages 446-456.
    13. Kim, Min-Hwi & Ham, Sang-Woo & Park, Jun-Seok & Jeong, Jae-Weon, 2014. "Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center," Energy, Elsevier, vol. 78(C), pages 384-396.
    14. Ferreiro Garcia, Ramon & Carril, Jose Carbia & Iglesias Garcia, Steven, 2017. "Low-grade heat-based thermal cycles unconstrained by the Carnot factor doing work by cooling," Energy, Elsevier, vol. 122(C), pages 204-213.
    15. Dong, Hye-Won & Lee, Sung-Joon & Yoon, Dong-Seob & Park, Joon-Young & Jeong, Jae-Weon, 2017. "Impact of district heat source on primary energy savings of a desiccant-enhanced evaporative cooling system," Energy, Elsevier, vol. 123(C), pages 432-444.
    16. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Mujahid Rafique, M. & Gandhidasan, P. & Rehman, Shafiqur & Al-Hadhrami, Luai M., 2015. "A review on desiccant based evaporative cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 145-159.
    18. Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
    19. Chen, Yi & Yang, Hongxing & Luo, Yimo, 2018. "Investigation on solar assisted liquid desiccant dehumidifier and evaporative cooling system for fresh air treatment," Energy, Elsevier, vol. 143(C), pages 114-127.
    20. She, Xiaohui & Yin, Yonggao & Zhang, Xiaosong, 2015. "Suggested solution concentration for an energy-efficient refrigeration system combined with condensation heat-driven liquid desiccant cycle," Renewable Energy, Elsevier, vol. 83(C), pages 553-564.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13511-:d:1236425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.