IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp883-896.html
   My bibliography  Save this article

Adaptive full-range decoupled ventilation strategy and air-conditioning systems for cleanrooms and buildings requiring strict humidity control and their performance evaluation

Author

Listed:
  • Zhuang, Chaoqun
  • Wang, Shengwei
  • Shan, Kui

Abstract

The air-conditioning systems in buildings and spaces, such as cleanrooms, requiring strict space humidity control are usually energy intensive, where significant energy wastes often occur due to improper system design and control. Dedicated outdoor air ventilation strategy, as the most recommended solution today, offers good energy performance by fully decoupling the cooling and dehumidification process. But its energy saving potential is restricted to a range of working conditions, due to the excessive outdoor air intake, it cannot provide energy-efficient operation when the internal latent load and ambient enthalpy are high. This paper therefore proposes a novel “adaptive full-range decoupled ventilation strategy”, which offers optimized energy-efficient operation by incorporating the advantages of different ventilation strategies and adopting an adaptive economizer. This study also addresses the design of the air-conditioning systems for the implementation of the proposed ventilation strategy. The energy performance and economic analysis of the air-conditioning systems adopting the proposed ventilation strategy are investigated and compared with most updated strategies available. Results show that the proposed ventilation strategy can offer superior energy performance over the full range of internal load and weather conditions while the initial cost is even lower than that for the most recommended ventilation strategy today.

Suggested Citation

  • Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2019. "Adaptive full-range decoupled ventilation strategy and air-conditioning systems for cleanrooms and buildings requiring strict humidity control and their performance evaluation," Energy, Elsevier, vol. 168(C), pages 883-896.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:883-896
    DOI: 10.1016/j.energy.2018.11.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218323582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fouda, A. & Melikyan, Z., 2010. "Assessment of a modified method for determining the cooling load of residential buildings," Energy, Elsevier, vol. 35(12), pages 4726-4730.
    2. Homod, Raad Z., 2014. "Assessment regarding energy saving and decoupling for different AHU (air handling unit) and control strategies in the hot-humid climatic region of Iraq," Energy, Elsevier, vol. 74(C), pages 762-774.
    3. Shan, Kui & Wang, Shengwei, 2017. "Energy efficient design and control of cleanroom environment control systems in subtropical regions – A comparative analysis and on-site validation," Applied Energy, Elsevier, vol. 204(C), pages 582-595.
    4. Xiao, Fu & Wang, Shengwei, 2009. "Progress and methodologies of lifecycle commissioning of HVAC systems to enhance building sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1144-1149, June.
    5. Kim, Min-Hwi & Park, Jun-Seok & Jeong, Jae-Weon, 2013. "Energy saving potential of liquid desiccant in evaporative-cooling-assisted 100% outdoor air system," Energy, Elsevier, vol. 59(C), pages 726-736.
    6. Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
    7. Kim, Wonuk & Jeon, Seung Won & Kim, Yongchan, 2016. "Model-based multi-objective optimal control of a VRF (variable refrigerant flow) combined system with DOAS (dedicated outdoor air system) using genetic algorithm under heating conditions," Energy, Elsevier, vol. 107(C), pages 196-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leehter Yao & Jin-Hao Huang, 2019. "Multi-Objective Optimization of Energy Saving Control for Air Conditioning System in Data Center," Energies, MDPI, vol. 12(8), pages 1-16, April.
    2. Qu, Ke & Barreto, Germilly & Iten, Muriel & Wang, Yuhao & Riffat, Saffa, 2023. "Energy and thermal performance of optimised hollow fibre liquid desiccant cooling and dehumidification systems in mediterranean regions: Modelling, validation and case study," Energy, Elsevier, vol. 263(PC).
    3. Tang, Rui & Wang, Shengwei & Li, Hangxin, 2019. "Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids," Applied Energy, Elsevier, vol. 250(C), pages 118-130.
    4. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2022. "A comparative analysis on alternative air-conditioning systems for high-tech cleanrooms and their performance in different climate zones," Energy, Elsevier, vol. 261(PA).
    5. Wang, Cuiling & Wang, Baolong & Cui, Mengdi & Wei, Falin, 2023. "Optimal fresh-air utilization strategy for constant temperature and humidity air-conditioning system based on isocost line," Energy, Elsevier, vol. 263(PD).
    6. Zhuang, Chaoqun & Wang, Shengwei, 2020. "Risk-based online robust optimal control of air-conditioning systems for buildings requiring strict humidity control considering measurement uncertainties," Applied Energy, Elsevier, vol. 261(C).
    7. Simon Li, 2023. "Review of Engineering Controls for Indoor Air Quality: A Systems Design Perspective," Sustainability, MDPI, vol. 15(19), pages 1-46, September.
    8. Yan, Tian & Sun, Zhongwei & Xu, Xinhua & Wan, Hang & Huang, Gongsheng, 2019. "Development of a simplified dynamic moisture transfer model of building wall layer of hygroscopic material," Energy, Elsevier, vol. 183(C), pages 1278-1294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
    2. Homod, Raad Z., 2018. "Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings," Renewable Energy, Elsevier, vol. 126(C), pages 49-64.
    3. Suranjan Salins, Sampath & Kumar, Shiva & Shetty, Sawan & Raghavendra, R., 2024. "Theoretical and experimental study of the effect of biomass based organic packing wettability on the LDDS and its life cycle analysis," Renewable Energy, Elsevier, vol. 225(C).
    4. Park, Joon-Young & Kim, Beom-Jun & Yoon, Soo-Yeol & Byon, Yoo-Suk & Jeong, Jae-Weon, 2019. "Experimental analysis of dehumidification performance of an evaporative cooling-assisted internally cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 235(C), pages 177-185.
    5. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    6. Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
    7. Min-Hwi Kim & Joon-Young Park & Jae-Weon Jeong, 2017. "Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System," Energies, MDPI, vol. 10(9), pages 1-19, September.
    8. Shan, Kui & Wang, Jiayuan & Hu, Maomao & Gao, Dian-ce, 2019. "A model-based control strategy to recover cooling energy from thermal mass in commercial buildings," Energy, Elsevier, vol. 172(C), pages 958-967.
    9. Shiying Li & Jae-Weon Jeong, 2018. "Energy Performance of Liquid Desiccant and Evaporative Cooling-Assisted 100% Outdoor Air Systems under Various Climatic Conditions," Energies, MDPI, vol. 11(6), pages 1-22, May.
    10. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    11. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    12. Cui, Can & Xue, Jing, 2024. "Energy and comfort aware operation of multi-zone HVAC system through preference-inspired deep reinforcement learning," Energy, Elsevier, vol. 292(C).
    13. Guan, Bowen & Zhang, Tao & Jun, Liu & Liu, Xiaohua, 2020. "Exergy analysis and performance improvement of liquid-desiccant deep-dehumidification system: An engineering case study," Energy, Elsevier, vol. 196(C).
    14. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    15. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    16. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2022. "A comparative analysis on alternative air-conditioning systems for high-tech cleanrooms and their performance in different climate zones," Energy, Elsevier, vol. 261(PA).
    17. Yu, Min Gyung & Pavlak, Gregory S., 2022. "Extracting interpretable building control rules from multi-objective model predictive control data sets," Energy, Elsevier, vol. 240(C).
    18. Wu, Dongxu & Cui, Qi & Gao, Yuanzhi & Dai, Zhaofeng & Chen, Bo & Wang, Changling & Zhang, Xiaosong, 2022. "Study on the performance of solar interfacial evaporation for high-efficiency liquid desiccant regeneration," Energy, Elsevier, vol. 257(C).
    19. Bai, Hongyu & Zhu, Jie & Chen, Xiangjie & Chu, Junze & Cui, Yuanlong & Yan, Yuying, 2020. "Steady-state performance evaluation and energy assessment of a complete membrane-based liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 258(C).
    20. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:883-896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.