IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v59y2013icp726-736.html
   My bibliography  Save this article

Energy saving potential of liquid desiccant in evaporative-cooling-assisted 100% outdoor air system

Author

Listed:
  • Kim, Min-Hwi
  • Park, Jun-Seok
  • Jeong, Jae-Weon

Abstract

The primary goal of this paper is to suggest integration of a liquid desiccant system into an evaporative-cooling-assisted 100% outdoor air system. Detailed energy simulation is performed for estimating the impact of the liquid desiccant system in indirect and direct evaporative cooler operations. The energy saving potential of the proposed system versus a conventional VAV (variable air volume) system is predicted via a series of energy simulations using TRNSYS 16 and a commercial equation solver program. Impact of water-side free cooling and solar thermal system on the operating energy saving of the liquid desiccant system is quantitatively evaluated. Simulation results showed that the proposed system consumes 51% less cooling energy compared to the conventional VAV system; primarily due to the water-side free cooling in maintaining the absorber temperature of the liquid desiccant system. The solar water heating system for regenerating the desiccant solution also contributes to the reduction in operating energy.

Suggested Citation

  • Kim, Min-Hwi & Park, Jun-Seok & Jeong, Jae-Weon, 2013. "Energy saving potential of liquid desiccant in evaporative-cooling-assisted 100% outdoor air system," Energy, Elsevier, vol. 59(C), pages 726-736.
  • Handle: RePEc:eee:energy:v:59:y:2013:i:c:p:726-736
    DOI: 10.1016/j.energy.2013.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213006051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zadpoor, Amir Abbas & Golshan, Ali Hamedani, 2006. "Performance improvement of a gas turbine cycle by using a desiccant-based evaporative cooling system," Energy, Elsevier, vol. 31(14), pages 2652-2664.
    2. Xiao, Fu & Ge, Gaoming & Niu, Xiaofeng, 2011. "Control performance of a dedicated outdoor air system adopting liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 88(1), pages 143-149, January.
    3. Kim, Min-Hwi & Kim, Jin-Hyo & Choi, An-Seop & Jeong, Jae-Weon, 2011. "Experimental study on the heat exchange effectiveness of a dry coil indirect evaporation cooler under various operating conditions," Energy, Elsevier, vol. 36(11), pages 6479-6489.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    2. Rafati Nasr, Mohammad & Kassai, Miklos & Ge, Gaoming & Simonson, Carey J., 2015. "Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation," Applied Energy, Elsevier, vol. 151(C), pages 32-40.
    3. Mortazavi, Mehdi & Schmid, Michael & Moghaddam, Saeed, 2017. "Compact and efficient generator for low grade solar and waste heat driven absorption systems," Applied Energy, Elsevier, vol. 198(C), pages 173-179.
    4. Min-Hwi Kim & Joon-Young Park & Jae-Weon Jeong, 2017. "Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System," Energies, MDPI, vol. 10(9), pages 1-19, September.
    5. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    6. Ruivo, Celestino R. & Goldsworthy, Mark & Intini, Manuel, 2014. "Interpolation methods to predict the influence of inlet airflow states on desiccant wheel performance at low regeneration temperature," Energy, Elsevier, vol. 68(C), pages 765-772.
    7. Liu, Weiwei & Lian, Zhiwei & Radermacher, Reinhard & Yao, Ye, 2007. "Energy consumption analysis on a dedicated outdoor air system with rotary desiccant wheel," Energy, Elsevier, vol. 32(9), pages 1749-1760.
    8. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2013. "Effect of rotational speed on the performances of a desiccant wheel," Applied Energy, Elsevier, vol. 104(C), pages 268-275.
    9. Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
    10. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    11. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    12. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
    13. Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2011. "Effect of various inlet air cooling methods on gas turbine performance," Energy, Elsevier, vol. 36(2), pages 1196-1205.
    14. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    15. Kim, Min-Hwi & Dong, Hae-Won & Park, Joon-Young & Jeong, Jae-Weon, 2016. "Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell," Applied Energy, Elsevier, vol. 180(C), pages 446-456.
    16. Qi, Ronghui & Tian, Changqing & Shao, Shuangquan & Tang, Mingsheng & Lu, Lin, 2011. "Experimental investigation on performance improvement of electro-osmotic regeneration for solid desiccant," Applied Energy, Elsevier, vol. 88(8), pages 2816-2823, August.
    17. Wen, Tao & Lu, Lin & Li, Mai & Zhong, Hong, 2018. "Comparative study of the regeneration characteristics of LiCl and a new mixed liquid desiccant solution," Energy, Elsevier, vol. 163(C), pages 992-1005.
    18. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Qi, Ronghui & Lu, Lin & Yang, Hongxing & Qin, Fei, 2013. "Investigation on wetted area and film thickness for falling film liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 112(C), pages 93-101.
    20. Mujahid Rafique, M. & Gandhidasan, P. & Rehman, Shafiqur & Al-Hadhrami, Luai M., 2015. "A review on desiccant based evaporative cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 145-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:59:y:2013:i:c:p:726-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.