IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12524-d1219513.html
   My bibliography  Save this article

The Effect of Hydrodynamics on the Power Efficiency of a Toroidal Oscillating Water Column Device

Author

Listed:
  • Dimitrios N. Konispoliatis

    (School of Naval Architecture and Marine Engineering, National Technical University of Athens, 15773 Athens, Greece)

Abstract

This study tries to identify the effect of hydrodynamics on the absorbed wave power using a toroidal Oscillating Water Column (OWC) device. To this end, the fundamental hydrodynamic boundary value problem for an arbitrary shaped toroidal OWC device of revolution with vertical axis is solved. The described method is based on the discretization of the flow field around the device by means of ring-shaped macro-elements, in each of which axisymmetric eigenfunction expansions for the velocity potential is made. The solution sought for the corresponding diffraction and radiation velocity potentials is achieved using Galerkin’s method. The applied formulation is generic and can be employed for arbitrary configurations of toroidal OWCs. Therefore, the numerical results shown and discussed in the present paper, in terms of the hydrodynamic loads and the air volume flows inside the OWC chamber, concern different types of OWCs. From the present analysis, it is demonstrated that the absorbed wave power by the examined toroidal devices is strongly affected by the geometrical parameters of the device; thus, these should be properly considered towards the maximization of the device’s wave power efficiency.

Suggested Citation

  • Dimitrios N. Konispoliatis, 2023. "The Effect of Hydrodynamics on the Power Efficiency of a Toroidal Oscillating Water Column Device," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12524-:d:1219513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Zhou & Chongwei Zhang & Dezhi Ning, 2018. "Hydrodynamic Investigation of a Concentric Cylindrical OWC Wave Energy Converter," Energies, MDPI, vol. 11(4), pages 1-23, April.
    2. Deng, Zhengzhi & Wang, Lin & Zhao, Xizeng & Wang, Peng, 2020. "Wave power extraction by a nearshore oscillating water column converter with a surging lip-wall," Renewable Energy, Elsevier, vol. 146(C), pages 662-674.
    3. Yang, Can & Xu, Tingting & Wan, Chang & Liu, Hengxu & Su, Zuohang & Zhao, Lujun & Chen, Hailong & Johanning, Lars, 2023. "Numerical investigation of a dual cylindrical OWC hybrid system incorporated into a fixed caisson breakwater," Energy, Elsevier, vol. 263(PE).
    4. Ning, De-zhi & Zhou, Yu & Mayon, Robert & Johanning, Lars, 2020. "Experimental investigation on the hydrodynamic performance of a cylindrical dual-chamber Oscillating Water Column device," Applied Energy, Elsevier, vol. 260(C).
    5. Chen Wang & Zhengzhi Deng & Pinjie Wang & Yu Yao, 2019. "Wave Power Extraction from a Dual Oscillating-Water- Column System Composed of Heave-Only and Onshore Units," Energies, MDPI, vol. 12(9), pages 1-22, May.
    6. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Wave power extraction for an oscillating water column device consisting of a surging front and back lip-wall: An analytical study," Renewable Energy, Elsevier, vol. 184(C), pages 100-114.
    7. Teixeira, Paulo R.F. & Davyt, Djavan P. & Didier, Eric & Ramalhais, Rubén, 2013. "Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations," Energy, Elsevier, vol. 61(C), pages 513-530.
    8. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    9. Kostas Belibassakis & Alexandros Magkouris & Eugen Rusu, 2020. "A BEM for the Hydrodynamic Analysis of Oscillating Water Column Systems in Variable Bathymetry," Energies, MDPI, vol. 13(13), pages 1-24, July.
    10. Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
    11. Zhang, Dahai & Li, Wei & Lin, Yonggang, 2009. "Wave energy in China: Current status and perspectives," Renewable Energy, Elsevier, vol. 34(10), pages 2089-2092.
    12. S. A. Mavrakos & D. N. Konispoliatis, 2012. "Hydrodynamics of a Free Floating Vertical Axisymmetric Oscillating Water Column Device," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-27, November.
    13. Cui, Lin & Zheng, Siming & Zhang, Yongliang & Miles, Jon & Iglesias, Gregorio, 2021. "Wave power extraction from a hybrid oscillating water column-oscillating buoy wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Zeng, Yuxin & Shi, Wei & Michailides, Constantine & Ren, Zhengru & Li, Xin, 2022. "Turbulence model effects on the hydrodynamic response of an oscillating water column (OWC) with use of a computational fluid dynamics model," Energy, Elsevier, vol. 261(PA).
    15. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Hydrodynamic performance of a heaving oscillating water column device restrained by a spring-damper system," Renewable Energy, Elsevier, vol. 187(C), pages 331-346.
    2. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2021. "Theoretical analysis on hydrodynamic performance for a dual-chamber oscillating water column device with a pitching front lip-wall," Energy, Elsevier, vol. 226(C).
    3. Xu, Conghao & He, Yuanyuan & Yao, Yu & Zuo, Jun, 2023. "Experimental and numerical study of a circular OWC with a U-shaped duct for wave energy conversion in long waves: Hydrodynamic characteristics and viscous energy loss," Renewable Energy, Elsevier, vol. 215(C).
    4. Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
    5. Ning, De-zhi & Wang, Rong-quan & Chen, Li-fen & Sun, Ke, 2019. "Experimental investigation of a land-based dual-chamber OWC wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 48-60.
    6. Ning, De-zhi & Zhou, Yu & Mayon, Robert & Johanning, Lars, 2020. "Experimental investigation on the hydrodynamic performance of a cylindrical dual-chamber Oscillating Water Column device," Applied Energy, Elsevier, vol. 260(C).
    7. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    9. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    10. Medina Rodríguez, Ayrton Alfonso & Trivedi, Kshma & Koley, Santanu & Oderiz Martinez, Itxaso & Mendoza, Edgar & Posada Vanegas, Gregorio & Silva, Rodolfo, 2023. "Improved hydrodynamic performance of an OWC device based on a Helmholtz resonator," Energy, Elsevier, vol. 273(C).
    11. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "A novel dual-chamber oscillating water column system with dual lip-wall pitching motions for wave energy conversion," Energy, Elsevier, vol. 246(C).
    12. Mohapatra, Piyush & Vijay, K.G. & Bhattacharyya, Anirban & Sahoo, Trilochan, 2023. "Influence of distinct bottom geometries on the hydrodynamic performance of an OWC device," Energy, Elsevier, vol. 277(C).
    13. Cheng, Yong & Song, Fukai & Xi, Chen & Collu, Maurizio & Yuan, Zhiming & Incecik, Atilla, 2023. "Feasibility of integrating a very large floating structure with multiple wave energy converters combining oscillating water columns and oscillating flaps," Energy, Elsevier, vol. 274(C).
    14. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Wang, Rong-quan & Ning, De-zhi, 2020. "Dynamic analysis of wave action on an OWC wave energy converter under the influence of viscosity," Renewable Energy, Elsevier, vol. 150(C), pages 578-588.
    16. Shahabi-Nejad, Meysam & Nikseresht, Amir H., 2022. "A comprehensive investigation of a hybrid wave energy converter including oscillating water column and horizontal floating cylinder," Energy, Elsevier, vol. 243(C).
    17. Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Cheng, Yong & Song, Fukai & Fu, Lei & Dai, Saishuai & Zhiming Yuan, & Incecik, Atilla, 2024. "Experimental investigation of a dual-pontoon WEC-type breakwater with a hydraulic-pneumatic complementary power take-off system," Energy, Elsevier, vol. 286(C).
    19. Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
    20. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12524-:d:1219513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.