Study on Efficient and Stable Energy Conversion Method of Oscillating Water Column Device Based on Energy Storage Valve Control
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jayashankar, V. & Anand, S. & Geetha, T. & Santhakumar, S. & Jagadeesh Kumar, V. & Ravindran, M. & Setoguchi, T. & Takao, M. & Toyota, K. & Nagata, S., 2009. "A twin unidirectional impulse turbine topology for OWC based wave energy plants," Renewable Energy, Elsevier, vol. 34(3), pages 692-698.
- Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
- Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
- S. A. Mavrakos & D. N. Konispoliatis, 2012. "Hydrodynamics of a Free Floating Vertical Axisymmetric Oscillating Water Column Device," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-27, November.
- Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2016. "Numerical energy balance analysis for an onshore oscillating water column–wave energy converter," Energy, Elsevier, vol. 116(P1), pages 539-557.
- Zeng, Yuxin & Shi, Wei & Michailides, Constantine & Ren, Zhengru & Li, Xin, 2022. "Turbulence model effects on the hydrodynamic response of an oscillating water column (OWC) with use of a computational fluid dynamics model," Energy, Elsevier, vol. 261(PA).
- Kharkeshi, Behrad Alizadeh & Shafaghat, Rouzbeh & Jahanian, Omid & Alamian, Rezvan & Rezanejad, Kourosh, 2022. "Experimental study of an oscillating water column converter to optimize nonlinear PTO using genetic algorithm," Energy, Elsevier, vol. 260(C).
- Yang, Can & Xu, Tingting & Wan, Chang & Liu, Hengxu & Su, Zuohang & Zhao, Lujun & Chen, Hailong & Johanning, Lars, 2023. "Numerical investigation of a dual cylindrical OWC hybrid system incorporated into a fixed caisson breakwater," Energy, Elsevier, vol. 263(PE).
- Ning, De-zhi & Zhou, Yu & Mayon, Robert & Johanning, Lars, 2020. "Experimental investigation on the hydrodynamic performance of a cylindrical dual-chamber Oscillating Water Column device," Applied Energy, Elsevier, vol. 260(C).
- Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
- Josset, C. & Clément, A.H., 2007. "A time-domain numerical simulator for oscillating water column wave power plants," Renewable Energy, Elsevier, vol. 32(8), pages 1379-1402.
- Dezhi Ning & Rongquan Wang & Chongwei Zhang, 2017. "Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dimitrios N. Konispoliatis, 2023. "The Effect of Hydrodynamics on the Power Efficiency of a Toroidal Oscillating Water Column Device," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
- Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
- Xu, Conghao & He, Yuanyuan & Yao, Yu & Zuo, Jun, 2023. "Experimental and numerical study of a circular OWC with a U-shaped duct for wave energy conversion in long waves: Hydrodynamic characteristics and viscous energy loss," Renewable Energy, Elsevier, vol. 215(C).
- Xu, Conghao & Zuo, Jun & Yao, Yu & He, Yuanyuan & Li, Jiangxia, 2024. "Characteristics of wave loading and viscous energy loss of a bottom-sitting U-OWC wave energy device: A validated numerical perspective," Energy, Elsevier, vol. 308(C).
- Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
- Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
- Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
- Ching-Piao Tsai & Chun-Han Ko & Ying-Chi Chen, 2018. "Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
- Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2021. "Theoretical analysis on hydrodynamic performance for a dual-chamber oscillating water column device with a pitching front lip-wall," Energy, Elsevier, vol. 226(C).
- Zhao, Ming & Palmer, Heath & Dhamelia, Vatsal & Wu, Helen, 2024. "Three-dimensional numerical simulation of a cylindrical oscillating water column (OWC) device placed in a wave flume," Renewable Energy, Elsevier, vol. 231(C).
- Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
- Shahabi-Nejad, Meysam & Nikseresht, Amir H., 2022. "A comprehensive investigation of a hybrid wave energy converter including oscillating water column and horizontal floating cylinder," Energy, Elsevier, vol. 243(C).
- Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Rezanejad, K. & Gadelho, J.F.M. & Guedes Soares, C., 2019. "Hydrodynamic analysis of an oscillating water column wave energy converter in the stepped bottom condition using CFD," Renewable Energy, Elsevier, vol. 135(C), pages 1241-1259.
- Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
- Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
- Fu, Lei & Wang, Rongquan & Kar, Prakash & Ning, Dezhi, 2024. "Experimental and numerical investigation of wave loads on land-based multi-chamber OWC converters," Energy, Elsevier, vol. 310(C).
- Xueyan Li & Zhen Yu & Hengliang Qu & Moyao Yang & Hongyuan Shi & Zhenhua Zhang, 2023. "Experimental Study on the Aerodynamic Performance and Wave Energy Capture Efficiency of Square and Curved OWC Wave Energy Conversion Devices," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
- Elhanafi, Ahmed & Kim, Chan Joo, 2018. "Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter," Renewable Energy, Elsevier, vol. 125(C), pages 518-528.
More about this item
Keywords
OWC; hydrodynamic performance; accumulator; numerical simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:666-:d:1581046. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.